Skip to main content
Log in

Effects of Initial Structure and Reversion Temperature on Austenite Nucleation Site in Pearlite and Ferrite–Pearlite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenite nucleation sites were investigated in near-eutectoid 0.8 mass pct C steel and hypoeutectoid 0.4 mass pct C steel samples with full pearlite and ferrite–pearlite initial structures, respectively. In particular, the prior austenite grain size had been coarsened to compare grain boundaries in the hierarchical pearlite structure, i.e., the low-angle pearlite colony and high-angle block boundaries with ferrite/pearlite interfaces in the austenite nucleation ability. When the full pearlite in 0.8 mass pct C steel underwent reversion at a relatively low temperature, austenite grains preferentially formed at pearlite block boundaries. Consequently, when the full pearlite with the coarse block structure underwent reversion just above the eutectoid temperature, the reversion took a long time due to the low nucleation density. However, austenite grains densely formed at the pearlite colony boundaries as well, as the reversion temperature became sufficiently high. On the other hand, when ferrite–pearlite in the 0.4 mass pct C steel underwent reversion to austenite, the ferrite/pearlite interface acted as a more preferential austenite nucleation site than the pearlite block boundary even in the case of low-temperature reversion. From these results, it can be concluded that the preferential austenite nucleation site in carbon steels is in the following order: ferrite/pearlite interface > pearlite block > colony boundaries. In addition, orientation analysis results revealed that ferrite restricts the austenite nucleation more strongly than pearlitic ferrite does, which contributes to the preferential nucleation at ferrite/pearlite interfaces. This suggests that austenite grains formed at a ferrite/pearlite interface tend to have an identical orientation even under high-temperature reversion. Therefore, it is thought that the activation of austenite nucleation within pearlite by increasing the reversion temperature may be effective for rapid austenitization and the grain refinement of austenite structure after the completion of reversion in carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Molinder: Acta Metall., 1956, vol. 4, pp. 565-571.

    Article  CAS  Google Scholar 

  2. L.J. Cuddy, J.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989-1995.

    Article  CAS  Google Scholar 

  3. G. Miyamoto, H. Usuki, Z.D. Li, T. Furuhara: Acta Mater., 2010, vol. 58, pp. 4492-4502.

    Article  CAS  Google Scholar 

  4. N. Nakada, Y. Arakawa, K.S. Park, T. Tsuchiyama, S. Takakai: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128-133.

    Article  CAS  Google Scholar 

  5. Y. Xian M. Enomoto Z. Yang, Z. Li, C. Zhang: Phil. Mag., 2013, vol. 93, pp. 1095-1109.

    Article  Google Scholar 

  6. N. Nakada, K. Mizutani, T. Tsuchiyama, S. Takaki: Acta Mater., 2014, vol. 65, pp. 251-258.

    Article  CAS  Google Scholar 

  7. G.R. Speich, V.A. Demarest, R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419-1428.

    Article  Google Scholar 

  8. V.A. Esin, B.Denand, Q.L. Bihan, M. Dehmas, J. Teixeira, G. Geandier, S. Denis, T. Sourmail, E.A. Gautier: Acta Mater., 2014, vol. 80, pp. 118-131.

    Article  CAS  Google Scholar 

  9. F.M.C. Cerda, I. Sabirov, C. Goulas, J. Sietsma, A. Monsalve, R.H. Petrov: Mater. Design, 2017, vol. 116, pp. 448-460.

    Article  Google Scholar 

  10. F.G. Caballero, C. Capdevila, C.G Andres: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1283-1291.

    Article  CAS  Google Scholar 

  11. A. Roosz, Z. Gacsi and E.G. Fuchsl: Acta Metall., 1983, vol. 31, pp. 509-517.

    Article  CAS  Google Scholar 

  12. Z. Li, Z. Wen, F. Su, R. Zhang, Z. Zhou: J. Alloy and Compounds, 2017, vol. 727, pp. 1050-1056.

    Article  CAS  Google Scholar 

  13. S. Zaefferer, S. I. Wright, D. Raabe: Metal. Mater. Tans. A, 2008, vol. 39A, pp. 374-389.

    Article  CAS  Google Scholar 

  14. N. Nakada, N. Koga, T. Tsuchiyama, S. Takaki: Scr. Mater., 2009, vol. 61, pp. 133-136.

    Article  CAS  Google Scholar 

  15. T. Takahashi, M. Nagumo, Y. Asano: Jpn. Inst. Met., 1978, vol. 42, pp. 708-715.

    Article  CAS  Google Scholar 

  16. N. Koga, N. Nakada, T. Tscuhiyama, S. Takaki, M. Ojima, Y. Adachi: Scr. Mater., 2012, vol. 67, pp. 400-403.

    Article  CAS  Google Scholar 

  17. A. Walentek, M. Seefeldt, B. Verlinden, E. Aernoudt, P. Van Houtte, J. Microsc. 2006, vol. 224, pp. 256-263.

    Article  CAS  Google Scholar 

  18. A. R. Marder, B. L. Bramfitt: Metall. Trans. A, 1975, vol. 24, pp. 365-372.

    Google Scholar 

  19. Z. Liu, G. Miyamoto, Z.G. Yang, T. Furuhara: Metal. Trans. A,. 2013, vol. 44A, pp. 5456-5467.

    Article  Google Scholar 

  20. T. Furuhara, T. Moritani, K. Sakamoto, T. Maki: Mater. Sci. Forum, 2007, vol. 539-543, pp. 4832-4837.

    Article  Google Scholar 

  21. G. Miyamoto, N. Iwata, N. Takayama and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 6393-6403.

    Article  CAS  Google Scholar 

  22. Z.D. Li, G. Miyamoto, Z.G. Yang, T. Furuhara: Scr. Mater., 2009, vol. 60, pp. 485-488.

    Article  CAS  Google Scholar 

  23. D. Z. Zhou, G. J. Shiflet: Metall. Trans. A, 1992, vol. 23A, pp. 1259-1269.

    Article  CAS  Google Scholar 

  24. N. Nakada, M. Kato: ISIJ Inter., 2016, vol. 56A, pp. 1866-1873.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Nakada.

Additional information

Manuscript submitted May 1, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, R., Nakada, N., Yabu, S. et al. Effects of Initial Structure and Reversion Temperature on Austenite Nucleation Site in Pearlite and Ferrite–Pearlite. Metall Mater Trans A 49, 6001–6009 (2018). https://doi.org/10.1007/s11661-018-4950-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4950-3

Navigation