Skip to main content

Advertisement

Log in

Effect of Alloying and Coiling Temperature on the Microstructure and Bending Performance of Ultra-High-Strength Strip Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

ABSTRACT

Two different high-strength B-containing microalloyed steel strips produced in industrial processing conditions, one treated with Ti and the other treated with Al, processed by controlled rolling, accelerated cooling, and coiling in two different temperature ranges [723 K to 733 K (450 °C to 460 °C)] and [633 K to 653 K (360 °C to 380 °C)] were subjected to bend testing. The Ti-treated steel coiled at the higher temperature 733 K (460 °C) showed the best bending performance. The relatively softer (tensile strength of < 900 MPa) and homogeneous microstructure containing mostly granular bainite and upper bainite to ~ 300-400 μm depth below the surface, generated at the higher coiling temperature, is preferred for bendability. The lower temperature coiling resulted in the formation of a hard surface layer dominated by martensite which is undesired as the steel becomes prone to shear cracking and interphase separation due to strain localization. The combined effects of beneficial texture components such as γ-fiber, {332} <113> and even {112} <131> in the sub-surface region as well as uniformity of through thickness texture of the rolled sheet improve the bendability. In the presence of crack initiators, like coarse and brittle TiN particles found in the Ti-treated steel, a harder microstructure and the presence of Cube and Goss texture in the sub-surface layer, seen for the lower coiling temperature can cause local transgranular cleavage cracking. Finally, the post-uniform elongation obtained from tensile testing and bendability follow a good correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Saiji, H. Kohei, and T. Yasush: JFE Tech. Rep., 2007, vol. 10, pp. 13–18.

    Google Scholar 

  2. K. Yamazaki, M. Oka, H. Yasuda, Y. Mizuyama, and H. Tsuchiya: Nippon Steel Tech. Rep., 1995, vol. 64, pp. 37–44.

    Google Scholar 

  3. Y.B. Xu, Y.L. Bai, Q. Xue, and L.T. Shen: Acta Mater., 1996, vol. 44, pp. 1917–26.

    Article  CAS  Google Scholar 

  4. M. Kaupper and M. Merklein: CIRP Ann. Manuf. Technol., 2013, vol. 62, pp. 247–50.

    Article  Google Scholar 

  5. Z. Marciniak, J.. Duncan, and S.J. Hu: Mechanics of Sheet Metal Forming, 2nd edn., Elsevier Ltd, Amsterdam, 2002.

    Google Scholar 

  6. E. Tempelman, H. Hercliff, and B.N. van Eyben: Manufacturing and Design: Understanding the Principles of How Things Are Made, 1st edn., Elsevier, Amsterdam, 2014.

    Google Scholar 

  7. D. Rèche, J. Besson, T. Sturel, and A.F. Gourgues-Lorenzon: in Relations between microstructure and bendability on TRIP-aided steels for automotive products, 2014, pp. 135–56.

  8. L. Xue: Eng. Fract. Mech., 2010, vol. 77, pp. 1275–97.

    Article  Google Scholar 

  9. J. Joutsenvaara: in Proceedings of the METNET Seminar 2012 in Izmir, T.R. Department, ed., Kemi-Tornio University of Applied Sciences, 2012, pp. 19–29.

  10. Y. Nagataki, S. Tsuyama, and Y. Hosoya: Steel Res. Lab., 2013, vol. 99, pp. 245–53.

    CAS  Google Scholar 

  11. K. Hashiguchi: Elastoplasticity Theory, vol. 42, Springer, Berlin, Heidelberg, 2009.

    Google Scholar 

  12. W. Wang, M. Li, Y. Zhao, and X. Wei: Mater. Des., 2014, vol. 56, pp. 907–13.

    Article  CAS  Google Scholar 

  13. M. Kuroda and V. Tvergaard: Eur. J. Mech. A/Solids, 2004, vol. 23, pp. 811–21.

    Article  Google Scholar 

  14. A.J. Kaijalainen, P. Suikkanen, L.P. Karjalainen, and J.J. Jonas: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1273–83.

    Article  Google Scholar 

  15. W. Wang, M. Li, Y. Zhao, and X. Wei: Mater. Des., 2014, vol. 56, pp. 907–13.

    Article  CAS  Google Scholar 

  16. M.D. M. Lie: Philos. Mag. A, 2001, vol. 81, pp. 1997–2020.

    Article  Google Scholar 

  17. J. R. Rice: Proceedings of the 14th International Congress on Theoretical and Applied Mechanics, North Holland Publishing Co, Amsterdam, 1976, pp. 207–20.

  18. A. Maatta, A. Jarvenpaa, M. Jaskari, K. Mantyjarvi, and J.A. Karjalainen: Mater. Form. Esaform 2012, Pts 1 & 2, 2012, vol. 504–506, pp. 901–06.

    Google Scholar 

  19. A.J. Kaijalainen, M. Liimatainen, V. Kesti, J. Heikkala, T. Liimatainen, and D.A. Porter: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 4175–88.

    Article  Google Scholar 

  20. D. Rèche, T. Sturel, A.F. Gourgues-Lorenzon, and J. Besson: Proc. Eur. Conf. Fract. 18, 2010, pp. 1–8.

    Google Scholar 

  21. A. Väisänen, K. Mäntyjärvi, and J.A. Karjalainen: Key Eng. Mater., 2009, vol. 410–411, pp. 611–20.

    Article  Google Scholar 

  22. N. Pottore, N. Fonstein, I. Gupta, and D. Bhattacharya: AHSSS Proc, 2004, pp. 119–29.

  23. G. Rosenberg, I. Sinaiová, P. Hvizdoš, and L. Juhar: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4755–71.

    Article  Google Scholar 

  24. K. Kawamura and K. Seto: US Patent 20,130,048,151, 2013, vol. 2, pp. 6–13.

  25. A.-M. Arola, A. Kaijalainen, and V. Kesti: AIP Conference Proceedings, vol. 1769, AIP Publishing LLC, 2016, p. 200024.

  26. J. Sarkar, T.R.G. Kutty, D.S. Wilkinson, J.D. Embury, and D.J. Lloyd: Mater. Sci. Eng. A, 2004, vol. 369, pp. 258–66.

    Article  Google Scholar 

  27. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997.

    Google Scholar 

  28. T. Siwecki, J. Eliasson, R. Lagneborg, and B. Hutchinson: ISIJ Int., 2010, vol. 50, pp. 760–67.

    Article  CAS  Google Scholar 

  29. H.K.D.H. Bhadeshia: Bainite in Steels: Transformations, Microstructure and Properties, IOM Communications, London, 2001.

    Google Scholar 

  30. B. Hutchinson, T. Siwecki, J. Komenda, J. Hagström, R. Lagneborg, J.-E. Hedin, and M. Gladh: Ironmak. Steelmak., 2014, vol. 41, pp. 1–6.

    Article  CAS  Google Scholar 

  31. J. Datsko and C.T. Yang: J. Eng. Ind., 1960, vol. 82, pp. 309–13.

    Article  Google Scholar 

  32. S.-C. Wang and P.-W. Kao: J. Mater. Sci., 1993, vol. 28, pp. 5169–75.

    Article  CAS  Google Scholar 

  33. F. Boratto, R. Barbosa, S. Yue, and J.J. Jonas: in THERMEC’ 88, 1988, pp. 383–90.

  34. M.G. Akben, T. Chandra, P. Plassiard, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 591–601.

    Article  CAS  Google Scholar 

  35. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36.

    Article  Google Scholar 

  36. M.P. Butrón-Guillén, J.J. Jonas, and R.K. Ray: Acta Metall. Et Mater., 1994, vol. 42, pp. 3615–27.

    Article  Google Scholar 

  37. D.M. Tracey: Eng. Fract. Mech., 1971, vol. 3, pp. 301–15.

    Article  Google Scholar 

  38. P. D. Wu, S. R. MacEwen, D. J. Lloyd, and K. W. Neale: Mater. Sci. Eng. A, 2004, vol. 364, pp. 182–87.

    Article  Google Scholar 

  39. A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, and D.A. Porter: Materials Science and Engineering: A, 2016, vol. 654, pp. 151–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tata Steel in Europe, UK, for providing the Research Material and sharing industrial information of the subject; Department of Science and Technology, New Delhi, India, for the support of research scholar Mr. Abhisek Mandal; research facilities developed at IIT Kharagpur through Institute SGDRI 2015 grant; and finally Dr. Martin Strangwood from the University of Birmingham for providing valuable inputs at different stages of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhisek Mandal.

Additional information

Manuscript submitted June 11, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Karmakar, A., Chakrabarti, D. et al. Effect of Alloying and Coiling Temperature on the Microstructure and Bending Performance of Ultra-High-Strength Strip Steel. Metall Mater Trans A 49, 6359–6374 (2018). https://doi.org/10.1007/s11661-018-4946-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4946-z

Navigation