Skip to main content
Log in

Thermodynamic Characteristics, Phase Separation, and Nanomechanical Properties of Ternary Fe-Co-Cu Alloys with Equiatomic Fe and Co Compositions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The thermodynamic parameters for a series of Fe(100−x)/2Co(100−x)/2Cux (x from 10 to 90, at. pct) alloys including their characteristic temperatures, the enthalpy and entropy changes of three phase transformations were determined systematically using differential scanning calorimetry (DSC). The corresponding vertical section of ternary Fe-Co-Cu phase diagram was predicted, and the relationships of the enthalpy and entropy changes vs Cu content were described by polynomial expressions. Metastable phase separation took place in those liquid Fe-Co-Cu alloys with the Cu content 30 ≤ x ≤ 70. The liquid phase separation temperatures were determined to outline the metastable miscibility gap, and the critical undercoolings to initiate phase separation were measured as a range of 57 K to 98 K. After such a phase separation, the liquid phase (to γ(Fe, Co)) exhibited the strongest undercooling ability in the Fe-Co-Cu alloys with x ≤ 70, whereas the solid-state undercooling for the eutectoid transformation is comparatively higher in the alloys with x > 70. The nanomechanical properties of α(Fe, Co) and (Cu) phases were measured by nanoindentation technique. In the Fe20Co20Cu60 alloy, both phases had the lowest nanohardness and reduced elastic modulus, and displayed severe creep behaviors, resulting mainly from its conspicuous liquid phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.L. Xie, L. Wan, D.D. Song, S. Wang, F. Lin, X.Y. Pan, and J. Xu, Mater. Design, 2015, vol. 87, pp. 482-87.

    Article  CAS  Google Scholar 

  2. B. Bhoi, V. Srinivas, and V. Singh, J. Alloy. Compd., 2010, vol. 496, pp. 423-28.

    Article  CAS  Google Scholar 

  3. A. Barbosa, G. Bobrovnitchii, A. Skury, R. Guimaraes, and M. Filgueira, Mater. Design, 2010, vol. 31, pp. 522-26.

    Article  CAS  Google Scholar 

  4. S. Bein, C. Colinet, and M. Durand-Charre, J. Alloy. Compd., 2000, vol. 313, pp. 133-43.

    Article  CAS  Google Scholar 

  5. M. Bamberger, A. Munitz, L. Kaufman, and R. Abbaschian, Calphad, 2002, vol. 26, pp. 375-84.

    Article  CAS  Google Scholar 

  6. M. Palumbo, S. Curiotto, and L. Battezzati, Calphad, 2006, vol. 30, pp. 171–78.

    Article  CAS  Google Scholar 

  7. W. Banda, G.A. Georgalli, C. Lang, and J.J. Eksteen, J. Alloy. Compd., 2008, vol. 461, pp. 178–82.

    Article  CAS  Google Scholar 

  8. M.O. Ilatovskaya, R.V. Starykh, and S.I. Sinyova, Metall. Mater. Trans. B, 2015, vol. 46, pp. 243-49.

    Article  Google Scholar 

  9. D.I. Kim, and R. Abbaschian, J. Phase Equilib., 2000, vol. 21, pp. 25–31.

    Article  CAS  Google Scholar 

  10. M. Bamberger, A. Munitz, L. Kaufman, and R. Abbaschian, Calphad, 2002, vol. 26, pp. 375–84.

    Article  CAS  Google Scholar 

  11. A. Munitz, A.M. Bamberger, S. Wannaparhun, and R. Abbaschian, J. Mater. Sci., 2006, vol. 41, pp. 2749–59.

    Article  CAS  Google Scholar 

  12. F.P. Dai, and B. Wei, Chin. Sci. Bull., 2009, vol. 54, pp. 1287-94.

    CAS  Google Scholar 

  13. L. Zhao, and J.Z. Zhao, J. Mater. Res., 2013, vol. 28, pp. 1203-10.

    Article  CAS  Google Scholar 

  14. Y.G. Yoo, W.T. Kim, S.C. Yu, and Y.D. Kim, J. Magn. Magn. Mater., 1996, vol. 157-158, pp. 233-34.

    Article  Google Scholar 

  15. O. Crisan, J.M. Le Breton, A. Jianu, A. Maignan, M. Nogues, J. Teillet, and G. Filoti, J. Magn. Magn. Mater., 1999, vol. 196-197, pp. 467-69.

    Article  Google Scholar 

  16. A. Sharifati and S. Sharafi, Mater. Design, 2012, vol. 41, pp. 8-15.

    Article  CAS  Google Scholar 

  17. Y. Ruan and X.J. Wang, Phys. Status Solidi B, 2015, vol. 252, pp. 361-64.

    Article  CAS  Google Scholar 

  18. U. Klancnik, J. Habjan, G. Klancnik, and J. Medved, J. Therm. Anal. Calorim, 2017, vol. 127, pp. 71-78.

    Article  CAS  Google Scholar 

  19. T. Wang, T.E. Cullinan, and R.E. Napolitano, Acta Mater., 2014, vol. 62, pp. 188-96.

    Article  CAS  Google Scholar 

  20. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, and C.E. Smith, Nature Mater., 2012, vol. 11, pp. 279-83.

    Article  CAS  Google Scholar 

  21. A. Deschamps, M. Garcia, J. Chevy, B. Davo, and F. De Geuser, Acta Mater., 2017, vol. 122, pp. 32-46.

    Article  CAS  Google Scholar 

  22. I.R. Lu, M. Kolbe, G.P. Görler, and R. Willnecker, Mat. Sci. Eng. A, 2004, vol. 375-377, pp. 754-58.

    Article  Google Scholar 

  23. I.S. Choi, M. Dao, and S. Suresh, J. Mech. Phys. Solids, 2008, vol. 56, pp. 157-71.

    Article  CAS  Google Scholar 

  24. J.J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Science, 2002, vol. 295, pp. 654-57.

    CAS  Google Scholar 

  25. H. Somekawa, and C.A. Schuh, Metall. Mater. Trans. A, 2016, vol. 47, pp. 3227-34.

    Article  Google Scholar 

  26. V.V. Shastry, and U. Ramamurty, Acta Mater., 2013, vol. 61, pp. 5119-29.

    Article  CAS  Google Scholar 

  27. D. Wu, J.S.C. Jang, and T.G. Nieh, Intermetallics, 2016, vol. 68, pp. 118-27.

    Article  CAS  Google Scholar 

  28. Y. Ruan, A. Mohajerani, and M. Dao, Sci. Rep., 2016, vol. 6, pp. 31684.

    Article  CAS  Google Scholar 

  29. Y. Ruan, Q.Q. Wang, S.Y. Chang, and B. Wei, Acta Mater., 2017, vol. 141, pp. 456-65.

    Article  CAS  Google Scholar 

  30. W.C. Oliver and G.M. Pharr, J. Mater. Res., 2004, vol. 19, pp. 3-20.

    Article  CAS  Google Scholar 

  31. C.D. Cao and G.P. Gorler, Chin. Phys. Lett., 2005, vol. 22, pp. 482-84.

    Article  CAS  Google Scholar 

  32. W.R. Maddocks and G.E. Claussen: Special Report 14, 1936, p. 116.

  33. P. Villars: ASM Alloy Phase Diagrams Database. ASM International, Materials Park, OH. http://www1.asminternational.org/AsmEnterprise/APD, 2006, Accessed 26 June 2013.

  34. F.P. Dai, W.L. Wang, Y. Ruan, and B. Wei, Appl. Phys. A, 2018, vol. 124, pp. 20.

    Article  Google Scholar 

  35. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8th ed, Elsevier Butterworth-Heinemann, Butterworth, Oxford, 2004, p. 14.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. U1660108, 51327901, and 51671161), China Scholarship Council and the Fundamental Research Funds for the Central Universities (Grant No. 3102018jgc009). The authors are thankful to Prof. M. Dao and Prof. S. Suresh in MIT for their constructive comments and support. The assistance of Mr. Q. Gao in the experimental work are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wei.

Additional information

Manuscript submitted June 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Y., Dai, F.P., Chang, SY. et al. Thermodynamic Characteristics, Phase Separation, and Nanomechanical Properties of Ternary Fe-Co-Cu Alloys with Equiatomic Fe and Co Compositions. Metall Mater Trans A 49, 6255–6264 (2018). https://doi.org/10.1007/s11661-018-4944-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4944-1

Navigation