Skip to main content
Log in

Effect of Carbon Nanotube (CNT) Length on the Mechanical Milling of Ni-CNT Powders and Ni-CNT/Al Reactive Synthesis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present paper investigates the effect of carbon nanotube (CNT) length (including the use of short multi-wall CNTs) and milling parameters on the nickel matrix crystal size, dislocation density, micro-strain, and CNT integrity post milling of mechanically milled Ni-CNT composite powder. Results show that CNT integrity is independent of CNT length post milling and short CNTs interact differently during milling resulting in more refined matrix microstructures, increased strain and dislocation density within the milled Ni-CNT powders compared with longer CNTs. The Ni-CNT powders were also preliminarily investigated as precursors in the reactive processing of nickel aluminide-CNT composites. Compacts with short CNTs resulted in better reaction characteristics producing composites with more Ni3Al content and greater hardness than reacted compacts with larger CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Esawi and K. Morsi: Compos. Part A Appl. Sci. Manuf., 2007, vol. 38, pp. 646–50.

    Article  Google Scholar 

  2. H. Liu, R. Hu, M. Zeng, J. Liu, and M. Zhu: J. Mater. Chem., 2012, vol. 22, pp. 8022–8.

    Article  CAS  Google Scholar 

  3. L. Ouyang, Z. Cao, H. Wang, R. Hu, and M. Zhu: J. Alloys Compd., 2017, vol. 691, pp. 422–35.

    Article  CAS  Google Scholar 

  4. S.R. Bakshi, D. Lahiri, and A. Agarwal: Int. Mater. Rev., 2010, vol. 55, pp. 41–64.

    Article  CAS  Google Scholar 

  5. B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi, and K. Kondoh: Acta Mater., 2017, vol. 140, pp. 317–25.

    Article  CAS  Google Scholar 

  6. S. Gharegozloo and H. Abdizadeh: Adv. Mater. Res., 2014, vol. 829, pp. 515–9.

    Article  Google Scholar 

  7. S. Gharegozloo: RSC Adv., 2016, vol. 6, pp. 47072–82.

    Article  CAS  Google Scholar 

  8. T. Borkar, J. Hwang, J.Y. Hwang, T.W. Scharf, J. Tiley, S.H. Hong, and R. Banerjee: J. Mater. Res., 2014, vol. 29, pp. 761–9.

    Article  CAS  Google Scholar 

  9. K. Morsi, S. Shinde, and E.A. Olevsky: J. Mater. Sci., 2006, vol. 41, pp. 5699–703.

    Article  CAS  Google Scholar 

  10. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  11. M.G. Suryanarayana and C. Norton: in X-Ray Diffraction: A Practical Approach, Plenum Press, New York, 1998, pp. 207–21.

    Chapter  Google Scholar 

  12. A.C. Langford and J.I. Wilson: J. Appl. Crystallogr., 1978, vol. 11, pp. 102–13.

  13. M. Mhadhbi, M. Khitouni, M. Escoda, L. Sunol, J. J. Dammak: J. Nanomater., 2010, vol. 2010, pp. 1–8.

    Article  Google Scholar 

  14. K.H. Smallman, R. E., Westmacott: Philos. Mag., 1957, vol. 2, pp. 669–83.

    Article  CAS  Google Scholar 

  15. R.E. Williamson, G. K., Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.

    Article  CAS  Google Scholar 

  16. K. Morsi, A.M.K. Esawi, P. Borah, S. Lanka, and A. Sayed: J. Compos. Mater., 2010, vol. 44, pp. 1991–2003.

  17. S. Azadehranjbar, F. Karimzadeh, and M.H. Enayati: Adv. Powder Technol., 2012, vol. 23, pp. 338–42.

    Article  CAS  Google Scholar 

  18. R.A. DiLeo, B.J. Landi, and R.P. Raffaelle: J. Appl. Phys., 2007, vol. 101, pp. 1–6.

    Article  Google Scholar 

  19. J.R. Simpson, J.A. Fagan, M.L. Becker, E. K. Hobbie, and A.R.H. Walker: Carbon N. Y., 2009, vol. 47, pp. 3238–41.

    Article  CAS  Google Scholar 

  20. R. Saito: New J. Phys., 2003, vol. 5, pp. 1–157.

    Article  CAS  Google Scholar 

  21. R.M. German: Liquid Phase Sintering, Springer US, 2013.

    Google Scholar 

  22. K. Morsi: Int. J. Self-Propagating High-Temperature Synth., 2017, vol. 26, pp. 199–209.

    Article  Google Scholar 

  23. S.V.N. Rao, P.V.M. Murthy, K.S. Suryanarayana, and S.V. Naidu: Mater. Lett., 1992, vol. 14, pp. 281–84.

  24. G. V. Samsonov, ed.: in Handbook of the physicochemical properties of the elements, IFI-Plenum, New York, 1968.

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank the National Science Foundation for funding this work under award number 1560850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Additional information

Manuscript submitted April 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bundy, V., Chauhan, M., Fitch, C. et al. Effect of Carbon Nanotube (CNT) Length on the Mechanical Milling of Ni-CNT Powders and Ni-CNT/Al Reactive Synthesis. Metall Mater Trans A 49, 6351–6358 (2018). https://doi.org/10.1007/s11661-018-4941-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4941-4

Navigation