Skip to main content
Log in

Improvement of Interfacial Strength with the Addition of Ni in Al/Cu Dissimilar Joints Produced via Laser Brazing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dissimilar metal joining between Al and Cu is effective to reduce the cost and weight of electrical components. In this study, dissimilar laser lap brazing of Al containing Ni to pure Cu was conducted, and the effect of the addition of Ni on the joint strength and microstructure at the dissimilar interface was examined. The addition of Ni higher than 2.8 at. pct improved the joint strength effectively, even though the thickness of the IMC layer at the dissimilar interface increased. The addition of Ni additionally produced not only (Ni,Cu)Al particles in θ-Al2Cu but also a (Ni,Cu)Al layer at the θ-Al2Cu/γ1-Al4Cu9 interface. This study implied that the addition of Ni to Al resulted in the formation of a (Ni,Cu)Al layer at the weakest interface between θ-Al2Cu and γ1-Al4Cu9, drastically increasing the strength of the Al/Cu dissimilar joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. IPG is a trademark of IPG Photonics Corporation, MA.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. J.P. Immarigeon, R.P. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes: Mater. Charact., 1995, vol. 35, pp. 41–67.

    Article  CAS  Google Scholar 

  2. R. Uscinowicz: Compos. Part B, 2013, vol. 44, pp. 344–56.

    Article  CAS  Google Scholar 

  3. Y. Funamizu and K. Watanabe: Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 147–52.

    Article  CAS  Google Scholar 

  4. T.M. Wang, F. Cao, P. Zhou, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, and Q.X. Yuan: J. Alloys Compd., 2014, vol. 616, pp. 550–55.

    Article  CAS  Google Scholar 

  5. S. Tavassoli, M. Abbasi, and R. Tahavvori: Mater. Des., 2016, vol. 108, pp. 343–53.

    Article  CAS  Google Scholar 

  6. C.Y. Chen and W.S. Hwang: Mater. Trans., 2007, vol. 48, pp. 1938–47.

    Article  CAS  Google Scholar 

  7. A. Gueydan, B. Domengès, and E. Hug: Intermetallics, 2014, vol. 50, pp. 34–42.

    Article  CAS  Google Scholar 

  8. M. Abbasi, A. Karimi Taheri, and M.T. Salehi: J. Alloys Compd., 2001, vol. 319, pp. 233–41.

    Article  CAS  Google Scholar 

  9. W.B. Lee, K.S. Bang, and S.B Jung: J. Alloys Compd., 2005, vol. 390, pp. 212–19.

    Article  CAS  Google Scholar 

  10. P. Xue, B.L. Xiao, and Z.Y. Ma: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3091–3103.

    Article  Google Scholar 

  11. J.C. Feng, Y.B. Liu, Q.J. Sun, J.P. Liu, and L.J. Wu: Adv. Eng. Mater., 2015, vol. 17, pp. 1480–85.

    Article  CAS  Google Scholar 

  12. Z.P. Cai, B.Q. Ai, R. Cao, Q. Lin, and J.H. Chen: J. Mater. Res., 2016, vol. 31, pp. 2876–87.

    Article  CAS  Google Scholar 

  13. X.L. Zhou, G. Zhang, Y. Shi, M. Zhu, and F.Q. Yang: Mater. Sci. Eng. A, 2017, vol. 705, pp. 105–13.

    Article  CAS  Google Scholar 

  14. T.A. Mai and A.C. Spowage: Mater. Sci. Eng. A, 2004, vol. 374, pp. 224–33.

    Article  Google Scholar 

  15. T. Solchenbach and P. Plapper: Opt. Laser Technol., 2013, vol. 54, pp. 249–56.

    Article  CAS  Google Scholar 

  16. P. Schmalen and P. Plapper: Phys. Proc., 2016, vol. 83, pp. 506–14.

    Article  CAS  Google Scholar 

  17. Y.N. Wei, J.L. Li, J.T. Xiong, and F.S. Zhang: J. Eng. Sci. Technol., 2016, vol. 19, pp. 90–95.

    Google Scholar 

  18. W.Y. Li, Q. Wen, X.W. Yang, Y.S. Wang, D.L. Gao, and W.B. Wang: Mater. Des., 2017, vol. 134, pp. 383–93.

    Article  CAS  Google Scholar 

  19. P. Xue, B.L. Xiao, D.R. Ni, and Z.Y. Ma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5723–27.

    Article  Google Scholar 

  20. M.F.X. Muthu and V. Jayabalan: J. Mater. Process. Technol., 2015, vol. 217, pp. 105–13.

    Article  CAS  Google Scholar 

  21. K.P. Mehta and V.J. Badheka: J. Mater. Process. Technol., 2017, vol. 239, pp. 336–45

    Article  CAS  Google Scholar 

  22. S.I. Matsuaka and H. Imai: J. Mater. Process. Technol., 2009, vol. 209, pp. 954–60.

    Article  Google Scholar 

  23. Y.Y. Zhao, D. Li, and Y.S. Zhang: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 354–60.

    Article  CAS  Google Scholar 

  24. J.W. Yang, B. Cao, X.C. He, and H.S. Luo: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 500–04.

    Article  CAS  Google Scholar 

  25. M. Braunovic and N. Alexandrov: IEEE Trans. Compon. Packag. Manuf. Technol. A, 1994, vol. 17, pp. 78–85.

    Article  CAS  Google Scholar 

  26. C.Z. Xia, Y.J. Li, U.A. Puchkov, S.A. Gerasimov, and J. Wang: Vacuum, 2008, vol. 82, pp. 799–804.

    Article  CAS  Google Scholar 

  27. A. Esmaeili, H.R.Z. Rajani, M. Sharbati, M.K.B. Givi, and M. Shamanian: Intermetallics, 2011, vol. 19, pp. 1711–19.

    Article  CAS  Google Scholar 

  28. F. Ji, S. Xue, and W. Dai: Mater. Des., 2012, vol. 42, pp. 156–63.

    Article  CAS  Google Scholar 

  29. L. Zhou, L.Y. Luo, C.W. Tan, Z.Y. Li, X.G. Song, H.Y. Zhao, Y.X. Huang, and J.C. Feng: Opt. Laser Technol., 2018, vol. 98, pp. 234–46.

    Article  CAS  Google Scholar 

  30. H.S. Furuya, Y.T Sato, Y.S Sato, H. Kokawa, and Y. Tatsumi: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 527–36.

    Article  Google Scholar 

  31. J.L. Murraym: Int. Met. Rev., 1985, vol. 30, pp. 211–33.

    Google Scholar 

  32. H. Jacobi and H.J. Engell: Acta Metall., 1971, vol. 19, pp. 701–11.

    Article  CAS  Google Scholar 

  33. A. Prince: Light Met. Syst. Part 2, 2005, pp. 1–23.

    Google Scholar 

  34. J.A. Rayne, M.P. Shearer, and C.L. Bauer: Thin Solid Films, 1980, vol. 65, pp. 381–91.

    Article  CAS  Google Scholar 

  35. E.R. Wallach and G.J. Davies: Met. Technol., 1997, vol. 4, pp. 183–90.

    Article  Google Scholar 

  36. L. Pan, P. Li, X. Hao, J. Zhou, and H. Dong: J. Mater. Process. Technol., 2018, vol. 255, pp. 308–18.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Mr. J.Q. Zhang, Mr. A. Honda, and Dr. K. Kobayashi for their technical assistance and acknowledge Professor N. Hirata for the preparation of the Al alloy used in this study. They also thank Professors T. Narushima and R. Kainuma for their helpful discussion. This work was partially supported by a Grant-in-Aid for Challenging Exploratory Research and a program named “Next Generation Automobiles in Miyagi,” partially entrusted by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Furuya.

Additional information

Manuscript submitted March 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuya, H.S., Sato, Y.S., Kokawa, H. et al. Improvement of Interfacial Strength with the Addition of Ni in Al/Cu Dissimilar Joints Produced via Laser Brazing. Metall Mater Trans A 49, 6215–6223 (2018). https://doi.org/10.1007/s11661-018-4938-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4938-z

Navigation