Laser Wire Deposition of Thick Ti-6Al-4V Buildups: Heat Transfer Model, Microstructure, and Mechanical Properties Evaluations

Abstract

This paper investigates the effect of depositing thick laser wire Ti-6Al-4V samples on the developed microstructure and subsequent mechanical properties. First, a thermal model is proposed to get a better understanding on the typical thermal cycles that the material has undergone. It is followed by a discussion on the typical structural features that developed in the as-built condition and following three post deposition heat treatments. A stress relief cycle did not substantially affect the morphology of the developed α platelets. Annealing and HIP followed by aging favored the coarsening of the post-deposited microstructure. A strengthening in terms of hardness has been observed only after the stress relief heat treatment. Developed static tensile properties were globally below the wrought levels. Stress-relieved specimens developed the higher strengths, whereas the annealed or HIPed samples followed by aging were associated with a better elongation. Charpy impact properties were higher in the annealed or HIPed condition followed by aging when compared with the stress-relieved ones. No anisotropy in the impact toughness properties was observed. The annealed and aged samples and the HIPed and aged samples produced overall very similar results showing that HIP is not required for enhance materials properties of laser wire deposition applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    G. Lütjering and J.C. Williams: Titanium, 2nd ed., Springer, Verlag Berlin Heidelberg, 2007, pp. 1-52.

    Google Scholar 

  2. 2.

    F.H.S. Froes, M.N. Gungor and M.A. Imam: JOM, 2007, vol. 59, pp. 28-31.

    CAS  Article  Google Scholar 

  3. 3.

    I. Gibson, D.W. Rosen and B. Stucker: Additive Manufacturing Technologies, Springer, New York, 2015, pp. 1-62.

    Google Scholar 

  4. 4.

    C.K. Chua and K.F. Leong: 3D Printing and Additive Manufacturing Principles and Applications, 4th ed., World Scientific, Singapore, 2014.

    Google Scholar 

  5. 5.

    E. Brandl, F. Palm, V. Michailov, B. Viehweger and C. Leyens: Mater. Des., 2011, vol. 32, pp. 4665-75.

    CAS  Article  Google Scholar 

  6. 6.

    E. Brandl, B. Baufeld, C. Leyens and R. Gault: Physcs. Proc., 2010, vol. 5, pp. 595-606.

    CAS  Article  Google Scholar 

  7. 7.

    P. Åkerfeldt, M.-L. Antti and R. Pederson: Mater. Sci. Eng. A, 2016, vol. 674, pp. 428-37.

    Article  Google Scholar 

  8. 8.

    B. Baufeld, E. Brandl and O. Van der Biest: J. Mater. Process. Tech., 2011, vol. 211, pp. 1146-58.

    CAS  Article  Google Scholar 

  9. 9.

    E. Brandl and D. Greitemeier: Mater. Lett., 2012, vol. 81, pp. 84-87.

    CAS  Article  Google Scholar 

  10. 10.

    E. Brandl, A. Schoberth and C. Leyens: Mater. Sci. Eng. A, 2012, vol. 532, pp. 295-307.

    CAS  Article  Google Scholar 

  11. 11.

    E. Brandl, V. Michailov, B. Viehweger and C. Leyens: Surf. Coat. Tech., 2011, vol. 206, pp. 1120-29.

    CAS  Article  Google Scholar 

  12. 12.

    E. Brandl, V. Michailov, B. Viehweger and C. Leyens: Surf. Coat. Tech., 2011, vol. 206, pp. 1130-41.

    CAS  Article  Google Scholar 

  13. 13.

    S.H. Mok, G. Bi, J. Folkes and I. Pashby: Surf. Coat. Tech., 2008, vol. 202, pp. 3933-39.

    CAS  Article  Google Scholar 

  14. 14.

    S.H. Mok, G. Bi, J. Folkes, I. Pashby and J. Segal: Surf. Coat. Tech., 2008, vol. 202, pp. 4613-19.

    CAS  Article  Google Scholar 

  15. 15.

    N. Chekir, Y. Tian, R. Gauvin, N. Brodusch, JJ Sixsmith and M. Brochu: Mater. Sci. Eng. A, 2018, vol: 724, pp. 335-47.

    CAS  Article  Google Scholar 

  16. 16.

    S.M. Thompson, L. Bian, N. Shamsaei and A. Yadollahi: Addit. Manuf., 2015, vol. 8, pp. 36-62.

    Article  Google Scholar 

  17. 17.

    C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth and M.M. Attallah: J. Alloy. Compd., 2015, vol. 629, pp. 351-61.

    CAS  Article  Google Scholar 

  18. 18.

    B. Baufeld: J. Eng. Manuf., 2011, vol. 226, pp. 126-36.

    Article  Google Scholar 

  19. 19.

    J.S. Keist and T.A. Palmer: Mater. Des., 2016, vol.106, pp. 482-94.

    CAS  Article  Google Scholar 

  20. 20.

    S. Wolff, T. Lee, E. Faierson, K. Ehmann and J. Cao: J. Manuf. Process., 2016, vol. 24, pp. 397-405.

    Article  Google Scholar 

  21. 21.

    B.E. Carroll, T.A. Palmer and A.M. Beese: Acta Mater., 2015, vol. 87, pp. 309-20.

    CAS  Article  Google Scholar 

  22. 22.

    N. Shamsaei, A. Yadollahi, L. Bian and S.M. Thompson: Addit. Manuf., 2015, vol. 8, pp. 12-35.

    Article  Google Scholar 

  23. 23.

    E.R. Denlinger, J. Irwin and P. Michaleris: J. Manuf. Sci. Eng., 2014, vol. 136, 061007.

    Article  Google Scholar 

  24. 24.

    Q. Yang, P. Zhang, L. Cheng, Z. Min, M. Chyu and A.C. To: Addit. Manuf., 2016, vol. 12, pp. 169-177.

    CAS  Article  Google Scholar 

  25. 25.

    M. Labudovic, D. Hu and R. Kovacevic: J. Mater. Sci., 2003, vol. 38, pp. 35-49.

    CAS  Article  Google Scholar 

  26. 26.

    Dr. Amimul Ahsan: Convection and Conduction Heat Transfer, InTech, Shanghai, 2011, pp. 315-40.

    Google Scholar 

  27. 27.

    J.C. Heigel, P. Michaleris and E.W. Reutzel: Addit. Manuf., 2015, vol. 5, pp. 9-19.

    CAS  Article  Google Scholar 

  28. 28.

    G. Mi, Y. Wei, X. Zhan, C. Gu and F. Yu: J. Mater. Process. Tech., 2014, vol. 214, pp. 2434-43.

    CAS  Article  Google Scholar 

  29. 29.

    R. Rai, J.W. Elmer, T.A. Palmer and T. DebRoy: J. Phys. D Appl. Phys., 2007, vol. 40, pp. 5753-66.

    CAS  Article  Google Scholar 

  30. 30.

    M.J. Donachie: Titanium: A Technical Guide, 2nd ed., ASM international, Materials Park, OH, 2000, pp. 13-24.

    Google Scholar 

  31. 31.

    I. Katzarov, S. Malinov and W. Sha: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1027-40.

    CAS  Article  Google Scholar 

  32. 32.

    S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1869-79.

    CAS  Article  Google Scholar 

  33. 33.

    G.P. Dinda, L. Song and J. Mazumder: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2914-22.

    CAS  Article  Google Scholar 

  34. 34.

    J.J. Lin, Y.H. Lv, Y.X. Liu, B.S. Xu, Z. Sun, Z.G. Li and Y.X. Wu: Mater. Des., 2016, vol. 102, pp. 30-40.

    CAS  Article  Google Scholar 

  35. 35.

    J.J. Lin, Y.H. Lv, Y.X. Liu, Z. Sun, K.B. Wang, Z.G. Li, Y.X. Wu and B.S. Xu: J. Mech. Behav. Biomed. Mater., 2017, vol. 69, pp. 19-29.

    CAS  Article  Google Scholar 

  36. 36.

    N. Chekir, Y. Tian, JJ Sixsmith and M. Brochu: Mater. Sci. Eng. A, 2018, vol. 724; pp. 376-84.

    CAS  Article  Google Scholar 

  37. 37.

    N. Stefansson, S.L. Semiatin and D. Eylon: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3527-34.

    CAS  Article  Google Scholar 

  38. 38.

    N. Stefansson and S.L. Semiatin: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 691-98.

    CAS  Article  Google Scholar 

  39. 39.

    S.L. Semiatin, B.C. Kirby and G.A. Salishchev: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2809-19.

    CAS  Article  Google Scholar 

  40. 40.

    T. Ahmed and H.J. Rack: Mater. Sci. Eng. A, 1998, vol. 243, pp. 206-11.

    Article  Google Scholar 

  41. 41.

    Y. Zhai, H. Galarraga and D.A. Lados: Eng. Fail. Anal., 2016, vol. 69, pp. 3-14.

    CAS  Article  Google Scholar 

  42. 42.

    J. Yu, M. Rombouts, G. Maes and F. Motmans: Physcs. Proc., 2012, vol. 39, pp. 416-24.

    CAS  Article  Google Scholar 

  43. 43.

    J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald and O.S. Es-Said: J. Mater. Eng. Perform., 2011, vol. 20, pp. 203-12.

    CAS  Article  Google Scholar 

  44. 44.

    Q. Zhang, J. Chen, Z. Qi, X. Lin, H. Tan and W. Huang: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3651-62.

    Article  Google Scholar 

  45. 45.

    F. Wang, S. Williams, P. Colegrove and A.A. Antonysamy: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 968-77.

    Article  Google Scholar 

  46. 46.

    M. Simonelli, Y.Y. Tse and C. Tuck: Mater. Sci. Eng. A, 2014, vol. 616, pp. 1-11.

    CAS  Article  Google Scholar 

  47. 47.

    C. Buirette, J. Huez, N. Gey, A. Vassel and E. Andrieu: Mater. Sci. Eng. A, 2014, vol. 618, pp. 546-57.

    CAS  Article  Google Scholar 

  48. 48.

    B. Baufeld, O. Van der Biest and S. Dillien: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1917-27.

    CAS  Article  Google Scholar 

  49. 49.

    D. Bhattacharyya, G.B. Viswanathan and H.L. Frase: Acta Mater., 2007, vol. 55, pp. 6765-78.

    CAS  Article  Google Scholar 

  50. 50.

    M. Niinomi, T. Kobayashi and N. Sasaki: Mater. Sci. Eng., 1998, vol. 100, pp. 45-55.

    Article  Google Scholar 

  51. 51.

    J.M. Gómez de Salazar, A. Ureña and J.G. Carrión: Scripta Mater., 1996, vol. 35, pp. 479-84.

    Article  Google Scholar 

  52. 52.

    M. Balasubramanian, V. Jayabalan and V. Balasubramanian: Mater. Lett., 2008, vol. 62, pp. 1102-06.

    CAS  Article  Google Scholar 

  53. 53.

    D.-G. Lee, S. Lee and Y. Lee: Mater. Sci. Eng. A, 2008, vol. 486, pp. 19-26.

    Article  Google Scholar 

  54. 54.

    T.J. Ma, W.-Y. Li and S.Y. Yang: Mater. Des., 2009, vol. 30, pp. 2128-32.

    CAS  Article  Google Scholar 

  55. 55.

    W. Zhou and K.G. Chew: Mater. Sci. Eng. A, 2003, vol. 347, pp. 180-85.

    Article  Google Scholar 

  56. 56.

    K.P. Rao, K. Angamuthu and P.B. Srinivasan: J. Mater. Process. Tech., 2008, vol. 199, pp. 185-92.

    CAS  Article  Google Scholar 

  57. 57.

    L.W. Meyer, L. Krüger, K. Sommer, T. Halle and M. Hockauf: Mech. Time-Depend. Mat., 2008, vol. 12, pp. 237-47.

    CAS  Article  Google Scholar 

  58. 58.

    T. Akahori, M. Niinomi and K.-I. Fukunaga: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1937-48.

    CAS  Article  Google Scholar 

  59. 59.

    M.-W. Wu and P.-H. Lai: Mater. Sci. Eng. A, 2016, vol. 658, pp. 429-38.

    CAS  Article  Google Scholar 

  60. 60.

    E. Yasa, J. Deckers, J.-P. Kruth, M. Rombouts and J. Luyten: Virtual Phys. Prototyp., 2010, vol. 5, pp. 89-98.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Consortium de Recherche et d’Innovation en Aérospatiale au Québec (CRIAQ), Liburdi, Centre de métallurgie du Québec, Bell Helicopter Textron Canada, Bombardier, Edmit, GE, Héroux-Devtek, MDA, and Pratt; and Whitney Canada for their project contribution under the CRIAQ MANU-601/NSERC CRD Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Brochu.

Additional information

Manuscript submitted April 10, 2018.

Appendix A: Simulation Data

Appendix A: Simulation Data

Simulation data are presented in Table AI.

Table AI Parameters Used for a Ti-6Al-4V Multi-Bead Layers LWD Simulation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chekir, N., Tian, Y., Gauvin, R. et al. Laser Wire Deposition of Thick Ti-6Al-4V Buildups: Heat Transfer Model, Microstructure, and Mechanical Properties Evaluations. Metall Mater Trans A 49, 6490–6508 (2018). https://doi.org/10.1007/s11661-018-4927-2

Download citation