Skip to main content
Log in

Influence of Degree of Deformation on Static Recrystallization Texture and Compressive Strength of NiTiFe Shape Memory Alloy Subjected to Canning Compression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Based on cold canning compression and subsequent annealing at 800 °C, mechanism for the influence of degree of deformation on static recrystallization texture and compressive strength of a NiTiFe shape memory alloy (SMA) was investigated via electron backscattered diffraction. The results show that the higher degree of deformation leads to the smaller grain size of the NiTiFe SMA subjected to cold canning compression and subsequent annealing. Cold canning compression and subsequent annealing can induce [111] fiber texture, which plays a dominant role in the compressive strength of NiTiFe SMA. The intensity of [111] texture increases with increasing degree of deformation, which gives rise to the slip systems with larger Schmid factors when the alloy is compressed in [111] direction. [111] direction is the soft orientation of NiTiFe SMA, and it is the increase of [111] texture intensity that leads to the decrease in compressive strength of NiTiFe SMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Etaati and K. Dehghani: Mater. Chem. Phys., 2013, vol. 140, pp. 208–15.

    Article  CAS  Google Scholar 

  2. M. Morakabati, M. Aboutalebi, S. Kheirandish, A. Karimi Taheri and S.M. Abbasi: Mater. Des., 2011, vol. 32, pp. 406–13.

    Article  CAS  Google Scholar 

  3. T. Niendorf, J. Lackmann, B. Gorny and H.J. Maier: Scr. Mater., 2011, vol. 65, pp. 915–8.

    Article  CAS  Google Scholar 

  4. E. Hornbogen: J. Mater. Sci., 2004, vol. 39, pp. 385–99.

    Article  CAS  Google Scholar 

  5. M.E. Mitwally and M. Farag: Mater. Sci. Eng. A, 2009, vol. 519, pp. 155–66.

    Article  Google Scholar 

  6. E. Hornbogen: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 630–3.

    Article  Google Scholar 

  7. H. Mirzadeh and M.H. Parsa: J. Alloy Compd., 2014, vol. 614, pp. 56–9.

    Article  CAS  Google Scholar 

  8. M. Morakabati, M. Aboutalebi, S. Kheirandish, A.K. Taheri and S.M. Abbasi: Intermetallics, 2011, vol. 19, pp. 1399–1404.

    Article  CAS  Google Scholar 

  9. A.S. Paula, K.K. Mahesh, C.M.L. Dos Santos, F.M. Braz Fernandes and C.S. DDa Costa Viana: Mater. Sci. Eng. A, 2008, vol. 481–482, pp. 146–50.

    Article  Google Scholar 

  10. D. Favier, Y. Liu, L. Orgéas, A. Sandel, L. Debove and P. Comte-Gaz: Mater. Sci. Eng. A, 2006, vol. 429, pp. 130–6.

    Article  Google Scholar 

  11. E.M. Sharifi, F. Karimzadeh and A. Kermanpur: Mater. Sci. Eng. A, 2014, vol. 607, pp. 33–7.

    Article  CAS  Google Scholar 

  12. C.H. Park, S.H. Han, S.W. Kim, J.K. Hong, T. Nam and J.T. Yeom: J. Alloy Compd., 2016, vol. 654, pp. 379–83.

    Article  CAS  Google Scholar 

  13. N. Resnina, S. Belyaev, V. Zeldovich, V. Pilyugin, N. Frolova and D. Glazova: Thermochim. Acta, 2016, vol. 627–629, pp. 20–30.

    Article  Google Scholar 

  14. H. Shahmir, M. Nili Ahmadabadi, Y. Huang, J. Myun Jung, H. Seop Kim and T.G. Langdon: Mater. Sci. Eng. A, 2015, vol. 626, pp. 203–6.

    Article  CAS  Google Scholar 

  15. F. Khaleghi, J. Khalil-Allafi, V. Abbasi-Chianeh and S. Noori: J. Alloy Compd., 2013, vol. 554, pp. 32–8.

    Article  CAS  Google Scholar 

  16. C. Yu, B. Aoun, L. Cui, Y. Liu, H. Yang, X. Jiang, S. Cai, D. Jiang, Z. Liu, D.E. Brown and Y. Ren: Acta Mater., 2016, vol. 115, pp. 35–44.

    Article  CAS  Google Scholar 

  17. H. Shahmir, M. Nili-Ahmadabadi, C.T. Wang, J.M. Jung, H.S. Kim and T.G. Langdon: Mater. Sci. Eng. A, 2015, vol. 629, pp. 16–22.

    Article  CAS  Google Scholar 

  18. H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani and T.G. Langdon, Mater. Sci. Eng. A, 2013, vol. 576, pp. 178–84.

    Article  CAS  Google Scholar 

  19. S. Jiang, Y. Zhang, L. Zhao and Y. Zheng: Intermetallics, 2013, vol. 32, pp. 344–51.

    Article  CAS  Google Scholar 

  20. S. Jiang, L. Hu, Y. Zhang and Y. Liang: J. Non-Cryst. Solids, 2013, vol. 367, pp. 23–9.

    Article  CAS  Google Scholar 

  21. C. Ye, S. Suslov, X. Fei and G.J. Cheng: Acta Mater., 2011, vol. 59, pp. 7219–27.

    Article  CAS  Google Scholar 

  22. S. Jiang, Y. Zhao, Y. Zhang, L. Hu and Y. Liang: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 3658–67.

    Article  CAS  Google Scholar 

  23. Y. Zhang, S. Jiang, S. Wang, D. Sun and L. Hu: Mater. Res. Bull., 2017, vol. 88, pp. 226–33.

    Article  CAS  Google Scholar 

  24. M. Alvand, M. Naseri, E. Borhani and H. Abdollah-Pour: J. Alloys Compd., 2017, vol. 712, pp. 517–25.

    Article  CAS  Google Scholar 

  25. H. Chen, L. Fu, P. Liang and F. Liu: Mater. Charact., 2017, vol. 125, pp. 160–73.

    Article  CAS  Google Scholar 

  26. M. Moghaddam, A. Zarei-Hanzaki, M.H. Pishbin, A.H. Shafieizad and V.B. Oliveira: Mater. Charact., 2016, vol. 119, pp. 137–47.

    Article  CAS  Google Scholar 

  27. A. Sadeghi and M. Pekguleryuz: Mater. Charact., 2011, vol. 62, pp. 742–50.

    Article  CAS  Google Scholar 

  28. S.H. Chang and S.K. Wu: Scr. Mater., 2004, vol. 50, pp. 937–41.

    Article  CAS  Google Scholar 

  29. T. Goryczka and P.Ochin: Solid State Phenomena, 2013, vol. 203-204, pp. 101–4.

    Article  Google Scholar 

  30. G. Laplanche, A. Kazuch and G. Eggeler: J. Alloys Compd., 2015, vol. 651, pp. 333–9.

    Article  CAS  Google Scholar 

  31. K.S. Suresh, Dong-Ik Kim, S.K. Bhaumik and Satyam Suwas: Scr. Mater., 2012, vol. 66, pp. 602–5.

    Article  CAS  Google Scholar 

  32. J. Luo, J.O. Bobang and J.J. Lewandowski: J. Alloys Compd., 2017, vol. 712, pp. 494–509.

    Article  CAS  Google Scholar 

  33. K. Gall, J. Tyber, V. Brice, C.P. Frick, H.J. Maier and N. Morgan: J. Biomed. Mater. Res. Part A, 2005, vol. 75A, pp. 810–23.

    Article  CAS  Google Scholar 

  34. L. Wang, L. Ma, C. Liu, Z.Y. Zhong and S.N. Luo: Mate. Sci. Eng. A, 2018, vol. 718, pp. 96–103.

    Article  CAS  Google Scholar 

  35. Y.Y. Li, S.S. Cao, X. Ma, C.B. Ke, X.P. Zhang: Mate. Sci. Eng. A, 2017, vol. 705, pp. 273–81.

    Article  CAS  Google Scholar 

  36. S. Saedi, A.S. Turabi, M.T. Andani, N.S. Moghaddam, M. Elahinia, H.E. Karaca: Mate. Sci. Eng. A, 2017, vol. 686, pp. 1–10.

    Article  CAS  Google Scholar 

  37. K. Gall and H. Sehitoglu: Int. J. Plast., 1999, vol. 15, pp. 69–92.

    Article  CAS  Google Scholar 

  38. L. Peng, X. Li, Z. Fan, C. Jiang, P. Zhou and X. Lai: Mater. Charact., 2017, vol. 126, pp. 35–41.

    Article  CAS  Google Scholar 

  39. B. Wang, B. Lei, J. Zhu, Q. Feng, L. Wang and D. Wu: Mater. Des., 2015, vol. 87, pp. 593–9.

    Article  CAS  Google Scholar 

  40. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elesevier Ltd., Kidlington, UK, 2004, pp. 169–269.

    Book  Google Scholar 

  41. D.A. Hughes, N. Hansen and D.J. Bammann: Scripta Mater., 2003, vol. 48, pp. 147–153.

    Article  CAS  Google Scholar 

  42. D. Kuhlmann-Wisldof and N. Hansen: Scripta Metall. Mater., 1991, vol. 25, pp. 1557–62.

    Article  Google Scholar 

  43. D.A. Hughes, Q. Liu, D.C. Chrzan and N. Hansen: Acta Mater., 1997, vol. 45, pp. 105–12.

    Article  CAS  Google Scholar 

  44. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

  45. A. Godfrey and D.A. Hughes: Acta Mater., 2000, vol. 48, pp. 1897–1905.

    Article  CAS  Google Scholar 

  46. W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–7.

    Article  CAS  Google Scholar 

  47. Y.I. Chumlyakov, A.S. Surikova and A.D. Korotaev: Phys. Metals Metallogr., 1996, vol. 82, pp. 102–9.

    Google Scholar 

  48. O. Benafan, R.D. Noebe, S.A. Padula II, A. Garg, B. Clausen, S. Vogel and R. Vaidyanathan: Int. J. Plast., 2013, vol. 51, pp. 103–21.

    Article  CAS  Google Scholar 

  49. T. Ezaz, J. Wang, H. Sehitoglu, H.J. Maier: Acta Mater., 2013, vol. 61, pp. 67–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Nos. 51475101 and 51305091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyong Jiang.

Additional information

Manuscript submitted April 8, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, S., Yan, B. et al. Influence of Degree of Deformation on Static Recrystallization Texture and Compressive Strength of NiTiFe Shape Memory Alloy Subjected to Canning Compression. Metall Mater Trans A 49, 6277–6289 (2018). https://doi.org/10.1007/s11661-018-4903-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4903-x

Navigation