Skip to main content
Log in

In Situ Micromechanical Testing for Single Crystal Property Characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An in situ method to fully characterize the single crystal properties for polycrystalline alloys is developed using microscale experimental and analysis techniques. The developed method can be applied to metallic engineering alloys that do not exist in single crystal form. Thus using this technique, testing and analysis on polycrystalline samples can yield the single crystal elastic and plastic properties required as input to micro- and mesoscale computational models such as those which rely on crystal plasticity theory. Compression and shear experiments are conducted on single crystal specimens of various crystallographic orientations. Analytical and numerical analysis of the experimental results yields a set of equations that can be solved for the single crystal elastic parameters. This novel methodology is demonstrated to produce reasonable elastic property prediction results for an aerospace aluminum lithium alloy, AA2070. Details regarding the experiments and analysis are provided to facilitate application of the technique to a wide range of polycrystalline material systems and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.J. Lavernia, T.S. Srivatsan and F.A. Mohamed, Journal of Materials Science 1990, vol. 25, pp. 1137-1158.

    Article  CAS  Google Scholar 

  2. K.T.V. Rao and R.O. Ritchie, Int. Mater. Rev. 1992, vol. 37, pp. 153-186.

    Article  CAS  Google Scholar 

  3. T. Dubois, Pratt, Alcoa Pioneer Use of Aluminum Fan Blades (Aviation International News, 2014). https://www.ainonline.com/aviation-news/air-transport/2014-07-28/pratt-alcoa-pioneer-use-aluminum-fan-blades#.

  4. L.B. Borkowski, J.A. Sharon and A. Staroselsky, Int. J. Comput. Methods Exp. Meas. 2018, vol. 6, pp. 635-646.

    Google Scholar 

  5. L.B. Borkowski and A. Staroselsky (2018) Multiscale Model for Al–Li Material Processing Simulation Under Forging Conditions. Springer, New York pp. 355.

    Google Scholar 

  6. A. Staroselsky and L. Anand, Journal of the Mechanics and Physics of Solids 1998, vol. 46, pp. 671-696.

    Article  CAS  Google Scholar 

  7. A. Staroselsky and B.N. Cassenti, International Journal of Solids and Structures 2011, vol. 48, pp. 2060-2075.

    Article  CAS  Google Scholar 

  8. A. Staroselsky and B. Cassenti, Mechanics of Time-Dependent Materials 2008, vol. 12, pp. 275-289.

    Article  CAS  Google Scholar 

  9. R.K. Kersey, A. Staroselsky, D.C. Dudzinski and M. Genest, Int. J. Fatigue 2013, vol. 55, pp. 183-193.

    Article  CAS  Google Scholar 

  10. M.D.S. Uchic, Paul A.; Dimiduk, Dennis M., Annual Review of Materials Research 2009, vol. 39, pp. 361-386.

    Article  CAS  Google Scholar 

  11. J.R. Greer and J.T.M. De Hosson, Prog. Mater Sci. 2011, vol. 56, pp. 654-724.

    Article  CAS  Google Scholar 

  12. D.S. Gianola and C. Eberl, JOM 2009, vol. 61, pp. 24-35.

    Article  Google Scholar 

  13. Q. Yu, M. Legros and A.M. Minor, MRS Bull. 2015, vol. 40, pp. 62-70.

    Article  Google Scholar 

  14. K.J. Hemker and W.N. Sharpe, Annual Review of Materials Research 2007, vol. 37, pp. 93-126.

    Article  CAS  Google Scholar 

  15. J.D. Nowak, K.A. Rzepiejewska-Malyska, R.C. Major, O.L. Warren and J. Michler, Mater. Today 2010, vol. 12, pp. 44-45.

    Article  Google Scholar 

  16. M.L.B. Palacio and B. Bhushan, Mater. Charact. 2013, vol. 78, pp. 1-20.

    Article  CAS  Google Scholar 

  17. J.H. Wu, W.Y. Tsai, J.C. Huang, C.H. Hsieh and G.-R. Huang, Materials Science and Engineering: A 2016, vol. 662, pp. 296-302.

    Article  CAS  Google Scholar 

  18. K.S. Ng and A.H.W. Ngan, Acta Mater. 2008, vol. 56, pp. 1712-1720.

    Article  CAS  Google Scholar 

  19. A. Kunz, S. Pathak and J.R. Greer, Acta Mater. 2011, vol. 59, pp. 4416-4424.

    Article  CAS  Google Scholar 

  20. C.S. Kaira, S.S. Singh, A. Kirubanandham and N. Chawla, Acta Mater. 2016, vol. 120, pp. 56-67.

    Article  CAS  Google Scholar 

  21. N. Malyar, J.-S. Micha, G. Dehm and C. Kirchlechner, Acta Mater. 2017, vol. 129, pp. 312-320.

    Article  CAS  Google Scholar 

  22. N. Malyar, J.-S. Micha, G. Dehm and C. Kirchlechner, Acta Mater. 2017, vol. 129, pp. 91-97.

    Article  CAS  Google Scholar 

  23. L.L. Li, Z.J. Zhang, J. Tan, C.B. Jiang, R.T. Qu, P. Zhang, J.B. Yang and Z.F. Zhang, Scientific Reports 2015, vol. 5, pp. 15631.1-15639.8.

    Google Scholar 

  24. N. Kheradmand, H. Vehoff and A. Barnoush, Acta Mater. 2013, vol. 61, pp. 7454-7465.

    Article  CAS  Google Scholar 

  25. N. Kheradmand and H. Vehoff, Adv. Eng. Mater. 2012, vol. 14, pp. 153-161.

    Article  CAS  Google Scholar 

  26. N. Wieczorek, G. Laplanche, J.K. Heyer, A.B. Parsa, J. Pfetzing-Micklich and G. Eggeler, Acta Mater. 2016, vol. 113, pp. 320-334.

    Article  CAS  Google Scholar 

  27. J. Pfetzing-Micklich, S. Brinckmann, S.R. Dey, F. Otto, A. Hartmaier and G. Eggeler, Materialwiss. Werkstofftech. 2011, vol. 42, pp. 219-223.

    Article  CAS  Google Scholar 

  28. J.K. Heyer, S. Brinckmann, J. Pfetzing-Micklich and G. Eggeler, Acta Mater. 2014, vol. 62, pp. 225-238.

    Article  CAS  Google Scholar 

  29. C. Mayr, G. Eggeler, G.A. Webster and G. Peter, Materials Science and Engineering: A 1995, vol. 199, pp. 121-130.

    Article  Google Scholar 

  30. C. Kirchlechner, J. Keckes, C. Motz, W. Grosinger, M.W. Kapp, J.S. Micha, O. Ulrich and G. Dehm, Acta Mater. 2011, vol. 59, pp. 5618-5626.

    Article  CAS  Google Scholar 

  31. C. Kirchlechner, P.J. Imrich, W. Grosinger, M.W. Kapp, J. Keckes, J.S. Micha, O. Ulrich, O. Thomas, S. Labat, C. Motz and G. Dehm, Acta Mater. 2012, vol. 60, pp. 1252-1258.

    Article  CAS  Google Scholar 

  32. J.J. Wortman and R.A. Evans, J. Appl. Phys. 1965, vol. 36, pp. 153-156.

    Article  CAS  Google Scholar 

  33. C.A. Volkert and E.T. Lilleodden, Philosophical Magazine 2006, vol. 86, pp. 5567-5579.

    Article  CAS  Google Scholar 

  34. M.D. Uchic and D.M. Dimiduk, Materials Science and Engineering: A 2005, vol. 400–401, pp. 268-278.

    Article  Google Scholar 

  35. J. Hütsch and E.T. Lilleodden, Scripta Mater. 2014, vol. 77, pp. 49-51.

    Article  Google Scholar 

  36. H. Zhang, B.E. Schuster, Q. Wei and K.T. Ramesh, Scripta Mater. 2006, vol. 54, pp. 181-186.

    Article  CAS  Google Scholar 

  37. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider and E. Arzt, Materials Science and Engineering: A 2008, vol. 489, pp. 319-329.

    Article  Google Scholar 

  38. I.N. Sneddon, International Journal of Engineering Science 1965, vol. 3, pp. 47-57.

    Article  Google Scholar 

  39. B. Noble, S.J. Harris and K. Dinsdale, Journal of Materials Science 1982, vol. 17, pp. 461-68.

    Article  CAS  Google Scholar 

  40. J.E. Hatch, A. Association and A.S. Metals: Aluminum: Properties and Physical Metallurgy. (American Society for Metals, Russell 1984).

    Google Scholar 

  41. R.L. Fleischer, Acta Metall. 1960, vol. 8, pp. 598-604.

    Article  CAS  Google Scholar 

  42. R.L. Fleischer, Acta Metall. 1960, vol. 8, pp. 32-35.

    Article  CAS  Google Scholar 

  43. ASTM-D4255, (ASTM International, West Conshohocken, PA: 2015).

  44. G. Simmons: Single Crystal Elastic Constants and Calculated Aggregate Properties. (Southern Methodist University Press, 1965).

  45. H. Neilson, In Department of Materials Science and Engineering, (Case Western Reserve Universit, Cleveland 2018).

    Google Scholar 

  46. W.P. Mason: Physical Acoustics. 3rd ed. (Academic Press, New York 1965).

    Google Scholar 

  47. Smithells Metals Reference Book. 8E ed. (Elsevier Ltd., 2004).

Download references

Acknowledgments

The authors are grateful for support and funding from Lightweight Innovations for Tomorrow (LIFT), operated by the American Lightweight Materials Manufacturing Innovation Institute (ALMMII). The authors also thank UTRC colleagues David Gagnon, Douglas Logan, Caitlyn Thorpe, Roy Wong, and Fred Espinosa for their assistance with specimen fabrication and testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Staroselsky.

Additional information

Manuscript submitted March 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkowski, L., Sharon, J.A. & Staroselsky, A. In Situ Micromechanical Testing for Single Crystal Property Characterization. Metall Mater Trans A 49, 6022–6033 (2018). https://doi.org/10.1007/s11661-018-4902-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4902-y

Navigation