Abstract
This study aims to investigate the effect of stress relieving heat treatment on the microstructure and high-temperature compressive deformation behavior of the Ti-6Al-4V alloy, manufactured by selective laser melting. Initial microstructural observation confirmed elongated prior β grains in the building direction of both specimens (as-fabricated and heat-treated specimens). Along with such, the as-fabricated specimen only featured α′-martensite phase, while the heat-treated specimen featured α′-martensite and some α and β phases. Compression tests carried out at room temperature gave yield strengths of 1365 and 1138 MPa for the as-fabricated and heat-treated specimens, respectively. Such values are similar or greater than those of commercial wrought materials. The compressive fracture strain significantly increased after heat treatment. There was a general tendency of reducing yield strength as compressive temperatures increased. At temperatures greater than 700 °C, the as-fabricated and heat-treated specimens achieved similar strength. Microstructural observation after deformation confirmed that the initial microstructure was retained up to temperatures of 500 °C. At 700 °C or greater, both specimens showed drastic microstructural evolution.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
M. Vaezi, H. Seitz, and S. Yang: Int. J. Adv. Manuf. Technol., 2013, vol. 67, pp. 1721–54.
L. Facchini, E. Magalini, and P. Robotti: Rapid Prototyp. J., 2009, vol. 15, pp. 171–78.
C. Qiu, N.J.E. Adkins, and M.M. Attallah: Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–39.
E.J. Bae, J.H. Kim, W.C. Kim, and H.Y. Kim: J. Adv. Prosthodont., 2014, vol. 6, pp. 266–71.
B. Nie, H. Huang, S. Bai, and J. Liu: Appl. Phys. A, 2015, vol. 118, pp. 37–41.
S. Bremen, W. Meiners, and A. Diatlov: Laser Techn. J., 2012, vol. 9, pp. 33–38.
F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto: J. Mater. Process. Technol., 2001, vol. 111, pp. 210–13.
Z. Lijing, L. Yingying, S. Shaobo, and Z. Hu: Chin. J. Aeronaut., 2015, vol. 28, pp. 564–69.
D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849–60.
M. Simonelli, Y.Y. Tse, and C. Tuck: Annual International Solid Freeform Fabrication Symposium, University of Texas, Austin, TX, 2012.
R.A. Wood: Titanium Alloy Handbook, Metals and Ceramics Information Center, Battelle, Columbus, OH, Dec 1972, publication no. MCIC-HB-02.
J.P. Blanchard, A. Chen, and B. Qiu: Nucl. Instrum. Meth. B, 1993, vol. 82, pp. 63–68.
M.K. Mcquillan: J. Metall. Rev., 1963, vol. 8, pp. 41–104.
M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243, pp. 231–36.
I. Gurrappa: Mater. Charact., 2003, vol. 51, pp. 131–39.
F.H. Froes, H. Friedrich, J. Kiese, and D. Bergoint: JOM, 2004, vol. 56, pp. 40–44.
Q. Huang, X. Liu, X. Yang, R. Zhang, Z. Shen, and Q. Feng: Front. Mater. Sci., 2015, vol. 9, 373–81.
B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck: J. Alloy Compd., 2012, vol. 541, 177–85.
G.M.T. Haar and T.H. Becker: Materials, 2018, vol. 11(1), p. 146.
H.K. Rafi, T.L. Starr, and B.E. Stucker: Int. J. Adv. Manuf. Technol., 2013, vol. 69, 1299–1309.
T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.
S. Leuders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H.A. Richard, and H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300–07.
Y.K. Kim, S.H. Park, J.H. Yu, B. AlMangour, and K.A. Lee: Mater. Sci. Eng. A, 2018, vol. 715, pp. 33–40.
B. Baufeld, O.V.D. Biest, and R. Gault: Mater. Des., 2010, vol. 31, pp. S106–S111.
S.L. Campanelli, N. Contuzzi, A.D. Ludovico, F. Caiazzo, F. Cardaropoli, and V. Sergi: Materials, 2014, vol. 7, pp. 4803–22.
T. Becker, M.V. Rooyen, and D. Dimitrov: S. Afr. J. Ind. Eng., 2015, vol. 26, pp. 93–103.
M. Simonelli, Y.Y. Tse, and C. Tuck: Metall. Mater. Trans. A, 2014, vol. 45A, 2863–72.
T.J. Ruggles, T.M. Rampton, A. Khosravani, and D.T. Fullwood: Ultramicroscopy, 2016, vol. 164, pp. 1–10.
M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.
S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, and H.S. Kim: Mater. Sci. Eng. A, 2017, vol. 689, pp. 122–33.
L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.
L.E. Murr, E.V. Esquivel, S.A. Quniones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernadez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker: Mater. Charact., 2009, vol. 60, pp. 96–105.
B. Vandenbroucke and J.P. Kruth: Rapid Prototyp. J., 2007, vol. 13, pp. 193–203.
L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, and K. Wissenbach: Rap. Prototyp. J., 2010, vol. 16, pp. 450–59.
M. Vanderhasten, L. Rabet, and B. Verlinden: Metalurgija, 2005, vol. 11, pp. 195–200.
J.A. Hines and K.S. Vecchio: Acta Mater., 1997, vol. 45, pp. 635–49.
Acknowledgment
This research was supported by the Korean Institute of Materials Science, Korea.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted April 10, 2018.
Rights and permissions
About this article
Cite this article
Kim, YK., Park, SH., Kim, YJ. et al. Effect of Stress Relieving Heat Treatment on the Microstructure and High-Temperature Compressive Deformation Behavior of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting. Metall Mater Trans A 49, 5763–5774 (2018). https://doi.org/10.1007/s11661-018-4864-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-018-4864-0