Microstructure and Property-Based Statistically Equivalent Representative Volume Elements for Polycrystalline Ni-Based Superalloys Containing Annealing Twins

Abstract

This paper has three major objectives related to the development of computational micromechanics models of Ni-based superalloys, containing a large number of annealing twins. The first is the development of a robust methodology for generating 3D statistically equivalent virtual polycrystalline microstructures (3D-SEVPM) of Ni-based superalloys. Starting from electron backscattered diffraction (EBSD) images of sections, the method develops distributions and correlation functions of various morphological and crystallographic parameters. To incorporate twins in the parent grain microstructure, the joint probability of the number of twins and parent grain size, and the conditional probability distributions of twin thickness and twin distance are determined. Subsequently, a method is devised for inserting twins following the distribution functions. The overall methodology is validated by successfully comparing various statistics of the virtual microstructures with 3D EBSD data. The second objective is to establish the microstructure-based statistically equivalent representative volume element or M-SERVE that corresponds to the minimum SERVE size at which the statistics of any morphological or crystallographic feature converge to that of the experimental data. The Kolmogorov–Smirnov (KS) test is conducted to assess the convergence of the M-SERVE size. The final objective is to estimate the property-based statistically equivalent RVE or P-SERVE, defined as the smallest SERVE, which should be analyzed to predict effective material properties. The crystal plasticity finite-element model is used to simulate SERVEs, from which the overall material response is computed. Convergence plots of material properties including the yield strength and hardening rate are used to assess the P-SERVE. A smaller P-SERVE compared to the M-SERVE indicates that the characteristic features of twins implemented in determining the M-SERVE are more stringent than those for determining material properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    D. Furrer, H. Fecht: J. Miner. Met. Mater. Soc. 1999, vol. 51, pp. 14–17.

    CAS  Article  Google Scholar 

  2. 2.

    T. M. Pollock, S. Tin (2006) J. Propuls. Power 22(2), 361–374.

    CAS  Article  Google Scholar 

  3. 3.

    H. U. Hong, I. S. Kim, B. G. Choi, M. Y. Kim, C. Y. Jo (2009) Mater. Sci. Eng. A 517(1), pp. 125–131.

    Article  Google Scholar 

  4. 4.

    F. Torster, G. Baumeister, J. Albrecht, G. Lutjering, D. Helm, M. A. Daeubler: Mater. Sci. Eng. A 1997, vol. 234-236, pp. 189–192.

    Article  Google Scholar 

  5. 5.

    J. Coakley, D. Dye, H. Basoalto: Acta Mater. 2011, vol. 59, pp. 863.

    CAS  Article  Google Scholar 

  6. 6.

    L. Kovarik, R. R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, M. J. Mills: . Prog. Mater. Sci. 2009, vol. 54, pp. 839.

    CAS  Article  Google Scholar 

  7. 7.

    T. M. Pollock, A. S. Argon: . Acta Metall. Mater. 1992, vol. 40 (1), pp. 1–30.

    CAS  Article  Google Scholar 

  8. 8.

    D. Nouailhas, G. Cailletaud: Scripta Mater. 1996, vol. 34 (4), pp. 565–571.

    CAS  Article  Google Scholar 

  9. 9.

    E. P. Busso, K. S. Cheong: . Le J. Phys. IV 2001, vol. 11 (PR5), pp. 161–170.

    CAS  Google Scholar 

  10. 10.

    D. M. Dimiduk, M. D. Uchic, T. A. Parthasarathy: Acta Mater. 2005, vol. 53 (15), pp. 4065–4077.

    CAS  Article  Google Scholar 

  11. 11.

    Y. S. Choi, T. A. Parthasarathy, D. M. Dimiduk, M. D. Uchic: . Mater. Sci. Eng. A 2005, vol. 397 (1), pp. 69–83.

    Article  Google Scholar 

  12. 12.

    J. Segurado, R.A. Lebensohn, J. Lorca, C.N. Tomé (2012) Int. J. Plasticity 28(1), 124–140.

    CAS  Article  Google Scholar 

  13. 13.

    M. G. Moghaddam, A. Achuthan, B. A. Bednarcyk, S. M. Arnold, E. J. Pineda: Comput. Mater. Sci. 2015, vol. 96, pp. 44–55.

    Article  Google Scholar 

  14. 14.

    S. Keshavarz, S. Ghosh: Acta Mater. 2013, vol. 61 (17), pp. 6549 – 6561.

    CAS  Article  Google Scholar 

  15. 15.

    S. Keshavarz, S. Ghosh: Int. J. Solids Struct. 2015, vol. 55, pp. 17–31.

    CAS  Article  Google Scholar 

  16. 16.

    S. Ghosh, G. Weber, S. Keshavarz: Mech. Res. Commun. 2016, vol. 78, pp. 34–46.

    Article  Google Scholar 

  17. 17.

    S. Keshavarz, S. Ghosh: Philos. Mag. 2015, vol. 95 (24), pp. 2639–2660.

    CAS  Article  Google Scholar 

  18. 18.

    S. Keshavarz, S. Ghosh, A. Reid, S. Langer: Acta Mater. 2016, vol. 114 (1), pp. 106–15.

    CAS  Article  Google Scholar 

  19. 19.

    J. S. Miao, T. M. Pollock, J. W. Jones: Acta Mater. 2012, vol. 60, pp. 2840–2854.

    CAS  Article  Google Scholar 

  20. 20.

    J. C. Stinville, W. C. Lenthe, J. Miao, T. M. Pollock: Acta Mater. 2016, vol. 103, pp. 461–473.

    CAS  Article  Google Scholar 

  21. 21.

    Z. Alam, D. Eastman, M. Jo, K. Hemker: JOM 2016, vol. 68 (11), pp. 2754–2760.

    CAS  Article  Google Scholar 

  22. 22.

    D. Eastman, Z. Alam, G. Weber, P. Shade, W. Uchic, M. Lenthe, T. Pollock, and K. Hemker: Proceedings of the 13th International Symposium on Superalloys, 2016, vol. 1, pp. 813–20.

  23. 23.

    R. Hill: J. Mech. Phys. Solids 1963, vol. 11 (5), pp. 357–72.

    Article  Google Scholar 

  24. 24.

    S. Torquato: Random Herogeneous Materials. Springer, New York (2002).

    Google Scholar 

  25. 25.

    R. Pyrz: Compos. Sci. Technol. 1994, vol. 50 (2), pp. 197–208.

    Article  Google Scholar 

  26. 26.

    S. Swaminathan, S. Ghosh, N. J. Pagano: J. Comput. Mater. 2006, vol. 40 (7), pp. 583–604.

    CAS  Article  Google Scholar 

  27. 27.

    S. Swaminathan, S. Ghosh: J. Comput. Mater. 2006, vol. 40 (7), pp. 605–621.

    CAS  Article  Google Scholar 

  28. 28.

    D. McDowell, S. Ghosh, S. Kalidindi: J. Min. Met. Mater. Soc. (JOM) 2011, vol. 63 (3), pp. 45–51.

    Article  Google Scholar 

  29. 29.

    S. Ghosh, D. Kubair: J. Mech. Phys. Solids 2016, vol. 95, pp. 1–24.

    Article  Google Scholar 

  30. 30.

    S. M. Qidwai, D. Turner, S. Niezgoda, A. Lewis, A. Geltmacher, D. J. Rowenhorst, S. R. Kalidindi: Acta Mater. 2012, vol. 60, pp. 52845299.

    CAS  Article  Google Scholar 

  31. 31.

    M. P. Echlin, A. Mottura, M. Wang, P. J. Mignone, D. P. Riley, G. V. Franks, T. M. Pollock: Acta Mater. 2013, vol. 64, pp. 307315.

    Article  Google Scholar 

  32. 32.

    M. Echlin, W. Lenthe, T. Pollock: Int. Mater. Manuf. Innov. 2014, vol. 3 (1), pp. 21–34.

    Article  Google Scholar 

  33. 33.

    A. Kumar, L. Nguyen, M. DeGraef, and V. Sundararaghavan (2016) Mod. Simul. Mater. Sci. Eng. 24(3), 1–13.

    Article  Google Scholar 

  34. 34.

    A. D. Rollett, S. B. Lee, R. Campman, G. S. Rohrer: Annu. Rev. Mater. Res. 2007, vol. 37, pp. 627 – 658.

    CAS  Article  Google Scholar 

  35. 35.

    D. M. Saylor, J. Fridy, B. S. El-Dasher, K.-Y. Jung, A. D. Rollett: Metall. Mater. Trans. A 2004, vol. 35A, pp. 1969–1979.

    CAS  Article  Google Scholar 

  36. 36.

    Y. Jiao, E. Padilla, N. Chawla: Acta Mater. 2013, vol. 61 (9), pp. 3370–3377.

    CAS  Article  Google Scholar 

  37. 37.

    A. Hasanabadi, M. Baniassadi, K. Abrinia, M. Safdari, H. Garmestani: Comput. Mater. Sci. 2016, vol. 111, pp. 107–15.

    Article  Google Scholar 

  38. 38.

    S. Niezgoda, D. Turner, D. Fullwood, S. Kalidindi: Acta Mater. 2010, vol. 58, pp. 44324445.

    CAS  Article  Google Scholar 

  39. 39.

    V. Sundararaghavan, N. Zabaras: Comput. Mater. Sci. 2005, vol. 32 (2), pp. 223–239.

    Article  Google Scholar 

  40. 40.

    M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1257–1273.

    CAS  Article  Google Scholar 

  41. 41.

    M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1274–1287.

    CAS  Article  Google Scholar 

  42. 42.

    M. A. Groeber, M. A. Jackson (2014) Integr. Mater. Manuf. Innov. 3, 1–17.

    Article  Google Scholar 

  43. 43.

    D. M. Saylor, A. Morawiec, G. S. Rohrer: Acta Mater. 2003, vol. 51, pp. 3663–3674.

    CAS  Article  Google Scholar 

  44. 44.

    W. M. Williams, C. S. Smith: Trans. Am. Inst. Min. Met. Eng. 1952, vol. 194, pp. 755–765.

    Google Scholar 

  45. 45.

    A. Bagri, J. P. Hanson, J. Lind, P. Kenesei, R. M. Suter, S. Gradeak, M. J. Demkowicz: Metall. Mater. Trans. A 2017, vol. 48A, pp. 354–361.

    Article  Google Scholar 

  46. 46.

    B. W. Krakauer, D. N. Seidman: J. Chem. Phys. 2000, vol. 8, pp. 27–40.

    CAS  Google Scholar 

  47. 47.

    J. Duyster, B. Stockhert: Contrib. Mineral Petrol. 2001, vol. 140, pp. 567–576.

    CAS  Article  Google Scholar 

  48. 48.

    W. Lenthe: Twin related domains in polycrystalline nickel-base superalloys: 3D structure and fatigue, Ph.D. thesis, University of California - Santa Barbara, 2017.

  49. 49.

    D. Zhang, C. D. Eggleton, D. D. Arola: Exp. Mech. 2002, vol. 42 (4), pp. 409–416.

    Article  Google Scholar 

  50. 50.

    G. Casella, C.P. Robert, and M.T. Wells: Generalized Accept–Reject Sampling Schemes, Lecture Notes: Monograph Series, vol. 45, Institute of Mathematical Statistics, Beachwood, 2004, pp. 342–47.

  51. 51.

    H.-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods. Butterworth-Heinemann, London, 1982.

    Google Scholar 

  52. 52.

    J. K. Mackenzie: Biometrika 1958, vol. 45, pp. 229–240.

    Article  Google Scholar 

  53. 53.

    D.M. Saylor, S. El Dasher, A.D. Rollett, G.S. Rohrer: Acta Mater. 2004, vol. 52, pp. 3649–3655.

    CAS  Article  Google Scholar 

  54. 54.

    J. Li, S. J. Dillon, G. S. Rohrer: Acta Mater. 2009, vol. 57, pp. 4304–4311.

    CAS  Article  Google Scholar 

  55. 55.

    W.W. Daniel: Kolmogorov–Smirnov One-Sample Test. PWS-Kent, Boston, 1990.

    Google Scholar 

  56. 56.

    C. Allan: Plasticity of nickel base single crystal superalloys, Ph.D. thesis, Massachusetts Institute of Technology, 1995.

  57. 57.

    J. Cheng, A. Shahba, S. Ghosh: Comput. Mech. 2016, vol. 57, pp. 733 – 753.

    Article  Google Scholar 

  58. 58.

    Simulation Modeling Suite: Simmetrix Inc., 2015.

  59. 59.

    J. C. Stinville, W. C. Lenthe, M. P. Echlin, P. G. Callahan, D. Texier, T. M. Pollock: Int. J. Fract. 2017, vol. 208, pp. 221–240.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study has been supported through a grant No. FA9550-12-1-0445 to the Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University awarded by the AFOSR/RSL Computational Mathematics Program (Manager Dr. A. Sayir) and AFRL/RX (Monitors Dr. C. Woodward and C. Przybyla). This sponsorship is gratefully acknowledged. Computing support by the Homewood High Performance Compute Cluster (HHPC) and Maryland Advanced Research Computing Center (MARCC) is gratefully acknowledged. The authors gratefully acknowledge the contributions of Dr. C. Torbet to the instrumentation and experimental methodologies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh.

Additional information

Manuscript submitted date February 27, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagri, A., Weber, G., Stinville, J. et al. Microstructure and Property-Based Statistically Equivalent Representative Volume Elements for Polycrystalline Ni-Based Superalloys Containing Annealing Twins. Metall and Mat Trans A 49, 5727–5744 (2018). https://doi.org/10.1007/s11661-018-4858-y

Download citation