Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4649–4658 | Cite as

The Contribution of Dislocation Density and Velocity to the Strain Rate and Size Effect Using Transient Indentation Methods and Activation Volume Analysis

  • D. E. Stegall
  • A. A. ElmustafaEmail author
Article
  • 149 Downloads

Abstract

Constant load indentation creep and load relaxation tests were performed on several FCC Al, Ag, and Ni metals that exhibit indentation size effect (ISE) to examine the coupled relationship between the activation volume V* at specific loads, the dislocation density ρ, and the dislocation velocity (v) from kinetics-based perspective. The influence of the ISE on the dislocation velocity and the activation volume is thoroughly examined using the two independent indentation creep and load relaxation experiments. This study is carried out based on the general experimental and theoretical hypothesis that the ISE is driven by a dislocation mechanism, specifically the increase in the geometrically necessary dislocation density at shallow depth of indentation due to the presence of a large strain gradient. Geometrically necessary dislocations dominate the material’s propensity to work harden when their density exceeds the density of statistically stored dislocations and are primarily considered responsible for the size effects observed in indentation. Based on the preestablished bilinear behavior and the decrease in the activation volume with hardening due to dislocation–dislocation interaction in indentation creep experiments by Elmustafa and Stone, 2003, we demonstrate that the dislocation velocity exhibits a bilinear behavior when plotted vs hardness using the Orowan’s relation. Ag and Ni distinctively depict a bilinear behavior in the dislocation velocity with hardness, whereas Al exhibited a rather linear behavior. This can be explained by the fact that aluminum’s work-hardening rate is higher due to the increase in the rate and intensity of cross-slip and dislocation climbing.

Notes

Acknowledgment

The authors would like to offer their thanks to Dr. M.A. Mamun duly acknowledging his assistance with the development of the nanoindentation methods used in this paper.

References

  1. 1.
    N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Acta. Metall. Mater, 1994, vol. 42, pp. 475-87.CrossRefGoogle Scholar
  2. 2.
    M. Qing, and D.R. Clarke: J. Mat. Res, 1995, vol. 10, pp. 853-63.CrossRefGoogle Scholar
  3. 3.
    W.D. Nix, and H. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411-25.CrossRefGoogle Scholar
  4. 4.
    G.M. Pharr, E.G. Herbert, and G. Yanfei: Ann. Rev. Mater. Res, 2010, vol. 40, pp. 271-292.CrossRefGoogle Scholar
  5. 5.
    N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman: Acta. Metall. Mater, 1993, vol. 41, pp. 2855–65.CrossRefGoogle Scholar
  6. 6.
    S.J. Bull, T.F. Page, and E.H. Yoffe: Philos. Mag. Lett, 1989, vol. 59, pp. 281–88.CrossRefGoogle Scholar
  7. 7.
    H. Li, and R.C. Bradt: J. Mater. Sci, 1993, vol. 28, pp. 917–26.CrossRefGoogle Scholar
  8. 8.
    T.T. Zhu, A.J. Bushby, and D.J. Dunstan: J. Mech. Phys. Solids, 2008, vol. 56, pp. 1170–85.CrossRefGoogle Scholar
  9. 9.
    G.M. Pharr, E.G. Herbert, and Y. Gao: Annu. Rev. Mater. Res, 2010, vol. 40, pp. 271–92.CrossRefGoogle Scholar
  10. 10.
    J.E. Jakes, R.S. Lakes, and D.S. Stone: J. Mater. Res, 2012, vol. 27, pp. 475-84.CrossRefGoogle Scholar
  11. 11.
    J.B. Puthoff, J.E. Jakes, H. Cao, and D.S. Stone: J. Mater. Res, 2009, vol. 24, pp. 1279-90.CrossRefGoogle Scholar
  12. 12.
    Y. Huang, J. Shen, Y. Sun, and J. Sun: Materials Design, 2010, vol. 31, pp. 1563-66.CrossRefGoogle Scholar
  13. 13.
    J.I. Jang, B.G. Yoo, Y.J. Kim, J.H. Oh, I.C. Choi, and H. Bei: Scripta Mater, 2011, vol. 64, pp. 753-56.CrossRefGoogle Scholar
  14. 14.
    M.M. Smedskjaer: APL, 2014, vol. 104, pp. 251906-1–251906-3.Google Scholar
  15. 15.
    Z. Peng, J. Gong, and H. Miao: J. Eur. Ceram. Soc: 2004, vol. 24, pp. 2193-2201.CrossRefGoogle Scholar
  16. 16.
    M.M. Renjo, L. Curkovic, S. Stefancic, and D. Coric: Dent. Mater, 2014, vol. 30, pp. e371-76.CrossRefGoogle Scholar
  17. 17.
    M.F. Ashby: Phil. Mag, 1970, vol. 21, pp. 399–424.CrossRefGoogle Scholar
  18. 18.
    D.E. Stegall, M.A. Mamun, B. Crawford, and A.A. Elmustafa: J. Mater. Res. 2012, vol. 27, pp. 1543-52.CrossRefGoogle Scholar
  19. 19.
    Y.L. Chiu, and A.H.W. Ngan: Acta Mater, 2002, vol. 50, pp. 2677–91.CrossRefGoogle Scholar
  20. 20.
    E. Demir, D. Raabe, N. Zaafarani, and S. Zaefferer: Acta. Mater, 2009, vol. 57, pp. 559-69.CrossRefGoogle Scholar
  21. 21.
    D. Kiener, K. Durst, M. Rester, and A.M. Minor: JOM, 2009, vol. 61, pp. 14-23.CrossRefGoogle Scholar
  22. 22.
    D.E. Kramer, M.F. Savage, A. Lin, and T. Foecke: Scripta. Mater, 2004, vol. 50, pp. 745-49.CrossRefGoogle Scholar
  23. 23.
    M. Rester, C. Motz, and R. Pippan: Scripta. Mater, 2008, vol. 59, pp. 742-45.CrossRefGoogle Scholar
  24. 24.
    B. Yang, and H. Vehoff: Acta. Mater, 2007, vol. 55, pp. 849-56.CrossRefGoogle Scholar
  25. 25.
    A.A. Elmustafa, and D.S. Stone: J. Mech. Phys. Solids, 2003, vol. 51, pp. 357-81.CrossRefGoogle Scholar
  26. 26.
    A.A. Elmustafa, and D.S. Stone: Acta. Metall, 2002, vol. 50, pp. 3641–50.Google Scholar
  27. 27.
    A.A. Elmustafa, and D.S. Stone: Mat. Sci. Eng. A, 2003, vol. 358, pp. 1-8.CrossRefGoogle Scholar
  28. 28.
    M. Rester, C. Motz, and R. Pippan: Scripta Mater, 2008, vol. 58, pp. 187-90.CrossRefGoogle Scholar
  29. 29.
    W. Bochniak: Acta. Metall, 1995, vol. 43, pp. 225–33.Google Scholar
  30. 30.
    M.Z. Butt, and P. Feltham: J. Met. Sci, 1984, vol. 18, pp. 123–26.CrossRefGoogle Scholar
  31. 31.
    D.S. Stone, and K.B. Yoder: J. Mater. Res, 1994, vol. 9, pp. 2524-33.CrossRefGoogle Scholar
  32. 32.
    Q. Zhou, J. Zhao, J.Y. Xie, F. Wnag, P. Huang, T.J. Lu, and K.W. Xu: Mat. Sci. Eng. A, 2014, vol. 608, pp. 184-89.CrossRefGoogle Scholar
  33. 33.
    Y. Wang, Y. Liu, and J.T. Wang: Mat. Sci. Eng. A, 2015, vol. 635, pp. 86-93.CrossRefGoogle Scholar
  34. 34.
    G.I. Taylor: Proc. Roy. Soc, 1934, vol. A145, pp. 362-87.CrossRefGoogle Scholar
  35. 35.
    D.E. Stegall, M.A. Mamun, B. Crawford, and A.A. Elmustafa: APL, 2014, vol. 104, pp. 041902-1–041902-4.Google Scholar
  36. 36.
    G.L. Wynick, and C.J. Boehlert: Mater. Charact., 2005, vol. 55, pp. 190–202.CrossRefGoogle Scholar
  37. 37.
    W.C. Oliver, and G.M. Pharr: J. Mat. Res, 2004, vol. 19, pp. 3-20.CrossRefGoogle Scholar
  38. 38.
    T.B. Britton, D. Randman, and A.J. Wilkinson: J. Mater. Res, 2009, vol. 24(3), pp. 607–15.CrossRefGoogle Scholar
  39. 39.
    P.C. Wo, and A.H.W. Ngan: J. Mater. Res, 2004, vol. 19(1), pp. 189–201.CrossRefGoogle Scholar
  40. 40.
    R.P. Carreker: Jom-J Met. AIME Trans, 1957, vol. 209, pp. 112-15.Google Scholar
  41. 41.
    O.-G. Lademo, O. Engler, J. Aegerter, T. Berstad, A. Benallel, and O.S. Hopperstad: J. Eng. Mater Trans. ASME, 2010, vol. 132, pp. 041007-1–041007-8.Google Scholar
  42. 42.
    L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Surresh: Acta. Mater, 2005, vol. 53, pp. 2169-79.CrossRefGoogle Scholar
  43. 43.
    D. Calliard, and J. Martin: Thermally Activated Mechanisms in Crystal Plasticity, 1st ed., Pergamon, Oxford, 2003, pp. 13-51.Google Scholar
  44. 44.
    F.H. Dalla Torre, E.V. Pereloma, and C.H.J. Davies: Scripta. Mater, 2004, vol. 51, pp. 367-71.CrossRefGoogle Scholar
  45. 45.
    Y.M. Wang, A.V. Hamza, and E. Ma: APL, 2004, vol. 86, pp. 241917-1–241917-4.Google Scholar
  46. 46.
    Z.H. Cao, L. Wang, K. Hu, Y.L. Huang, and X.K. Meng: Acta Mater, 2012, vol. 60, pp. 6742-54.CrossRefGoogle Scholar
  47. 47.
    C. Su, E.G. Herbert, S. Sohn, J.A. LaManna, W.C. Oliver, and G.M. Pharr: J. Mech. Phys. Solids, 2013, vol. 61, pp. 517-36.CrossRefGoogle Scholar
  48. 48.
    B. Xu, Z. Yue, and X. Chen: J. Phys. D. Appl. Phys, 2010, vol. 43, pp. 1-5.CrossRefGoogle Scholar
  49. 49.
    A.A. Elmustafa, and D.S. Stone: Mater. Lett, 2002, vol. 57, pp. 1072-78.CrossRefGoogle Scholar
  50. 50.
    A. Krauz, and H. Eyring: Deformation Kinetics, Wiley-Interscience, New York, NY, 1975, pp. 45-81.Google Scholar
  51. 51.
    T.H. Courtney: Mechanical Behavior of Materials, 2nd ed., McGraw Hill, New York, 1990, pp. 125–31.Google Scholar
  52. 52.
    R. B. King: Int. J. Solids Struct, 1987, vol. 23, pp. 1657–64.CrossRefGoogle Scholar
  53. 53.
    J.F. Nye: Acta Metall, 1953, vol. 1, 153–62.CrossRefGoogle Scholar
  54. 54.
    Z. Zong, J. Lou, O.O. Adewoye, A.A. Elmustafa, F. Hammand, and W.O. Soboyejo: Mat. Sci. Eng. A, 2006, vol. 434, pp. 178-87.CrossRefGoogle Scholar
  55. 55.
    W.G. Johnston, and J.J. Gilman: J. Appl. Phys, 1959, vol. 30, pp. 129-44.CrossRefGoogle Scholar
  56. 56.
    R.W. Rohde, and C.H. Pitt: J. Appl. Phys, 1968, vol. 39, pp. 3186-92.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringOld Dominion UniversityNorfolkUSA
  2. 2.Applied Research CenterThomas Jefferson National Accelerator FacilityNewport NewsUSA

Personalised recommendations