Skip to main content

Advertisement

Log in

Correlation of Microstructure to Creep Response of Hot Isostatically Pressed and Aged Electron Beam Melted Inconel 718

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Creep rupture samples were fabricated by additive manufacturing (AM) via electron beam melting (EBM) to study the effects of grain morphology (equiaxed/columnar grains) and loading direction (longitudinal/transverse) with respect to build direction on creep deformation at 923 K (650 °C) with applied stresses of 580 and 600 MPa. The observed minimum creep rates and creep rupture lives of EBM Inconel 718 after post-processing by hot isostatic pressing (HIP) were found to be comparable to wrought material. The material with equiaxed grains exhibited low creep strain (2 pct) and short creep lifetimes (800 hours), whereas longer times (approximately 4500 hours) and high creep strain (up to 23 pct) were observed for material with columnar grains. The high stress exponent (n > 14) reflected the resistance to dislocation motion by γ” particles during creep. A precipitate-free zone (PFZ) was observed around the grain boundary δ phase. Creep damage occurred as voids and cracks in the PFZ. Optimal post-processing of EBM Inconel 718 material should be explored to prevent δ phase embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. [16]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. H.J. Wagner and A.M. Hall: Physical metallurgy of alloy 718, No. DMIC-217, Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH, 1965.

  3. A. Lingenfelter: Superalloy, 1989, 718, 673-83.

    Google Scholar 

  4. J.F. Radavich: in Conference Proceedings on Superalloy, 1989, pp. 229–40.

  5. K. Sano, N. Oono, S. Ukai, S. Hayashi, T. Inoue, S. Yamashita and T. Yoshitake: J. Nucl. Mater., 2013, 442, 389-93.

    Article  Google Scholar 

  6. M. Burke and M. Miller: ed. EA Loria, Minerals, Met. And Mat. Society, 1991, pp. 447–56.

  7. S. Li, J. Zhuang, J. Yang and X. Xie, Superalloys, 1994, 718, 625-706.

    Google Scholar 

  8. S. Azadian, L.-Y. Wei and R. Warren, Mater. Charact., 2004, 53, 7–16.

    Article  Google Scholar 

  9. M. Anderson, A. L. Thielin, F. Bridier, P. Bocher and J. Savoie, Mater. Sci. Eng: A, 2017, 679, 48–55.

    Article  Google Scholar 

  10. I. Gibson, D. W. Rosen and B. Stucker: in Additive Manufacturing Technologies. Springer, Berlin, 2010, pp. 299–32.

    Book  Google Scholar 

  11. K. N. Amato, S. M. Gaytan, L. E. Murr, E. Martinez, P. W. Shindo, J. Hernandez, S. Collins and F. Medina, Acta Mater., 2012, 60, 2229-39.

    Article  Google Scholar 

  12. W. J. Sames, K. A. Unocic, R. R. Dehoff, T. Lolla and S. S. Babu, J. Mater. Res., 2014, 29, 1920-30.

    Article  Google Scholar 

  13. Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin and S. Babu, Metall. Mater. Trans. A, 2014, 45, 4470-83.

    Article  Google Scholar 

  14. M. Kirka, K. Unocic, N. Raghavan, F. Medina, R. Dehoff and S. Babu, JOM, 2016, 68, 1012-20.

    Article  Google Scholar 

  15. M. M. Kirka, F. Medina, R. Dehoff and A. Okello, Mater. Sci. Eng: A, 2017, 680, 338-46.

    Article  Google Scholar 

  16. M. M. Kirka, Y. Lee, D. A. Greeley, A. Okello, M. J. Goin, M. T. Pearce and R. R. Dehoff, JOM, 2017, 69, 523-31.

    Article  Google Scholar 

  17. Special_Metals: Special Metals Corporation, 2007, 045, pp. 1–28.

  18. ASTM-E139-11: ASTM International, 2011.

  19. W. Chen and M. Chaturvedi: Mater. Sci. Eng: A, 1994, 183, 81-89.

    Article  Google Scholar 

  20. R. Hayes: Superalloys 718, 625 and Various Derivatives, 549–61.

  21. F. VerSnyder and R. Guard: Trans. ASM, 1960, 52, 485.

    Google Scholar 

  22. G. Edward and M. F. Ashby, Acta Metall Mater, 1979, 27, 1505-18.

    Article  Google Scholar 

  23. T. Lillo, J. Cole, M. Frary and S. Schlegel, Metall. Mater. Trans. A, 2009, 40, 2803.

    Article  Google Scholar 

  24. B. Kear and B. Piearcey: Aime, Trans, 1967, 239, 1209-15.

    Google Scholar 

  25. C. Brinkman, M. Booker and J. Ding, Superalloys, 1991, 718, 519-36.

    Google Scholar 

  26. G. Korth and G. Smolik, Idaho National Engineering Lab., Idaho Falls (USA), 1978.

  27. Deparment-of-Defense: Military Handbook, 1998, 5, 1–1653.

  28. Y.-L. Kuo, S. Horikawa and K. Kakehi: Scr. Mater., 2017, 129, 74-78.

    Article  Google Scholar 

  29. S. Antolovich: in Proceedings of the International Symposium on the Metallurgy and Applications of Superalloy 718, 1989, pp. 647–53.

  30. G. A. Rao, M. Kumar, M. Srinivas and D. Sarma, Mater. Sci. Eng: A, 2003, 355, 114-25.

    Article  Google Scholar 

  31. F. H. Norton, The Creep of Steel at High Temperatures, McGraw-Hill Book Company, Incorporated, 1929.

    Google Scholar 

  32. H. Burt and B. Wilshire, Metall. Mater. Trans. A, 2004, 35, 1691.

    Article  Google Scholar 

  33. S. Spigarelli, E. Cerri, P. Bianchi and E. Evangelista, Mater. Sci. Tech., 1999, 15, 1433-40.

    Article  Google Scholar 

  34. T. Shrestha, M. Basirat, I. Charit, G. P. Potirniche, K. K. Rink and U. Sahaym, J. Nucl. Mater., 2012, 423, 110–19.

    Article  Google Scholar 

  35. T. G. Langdon and F. A. Mohamed, J of Mat Sci, 1978, 13, 1282–90.

    Article  Google Scholar 

  36. J. Čadek, Mater. Sci. Eng., 1987, 94, 79–92.

    Article  Google Scholar 

  37. Y. Han and M. Chaturvedi, Mater. Sci. Eng., 1987, 85, 59–65.

    Article  Google Scholar 

  38. B. A. Shassere, Y. Yamamoto and S. S. Babu, Metall. Mater. Trans. A, 2016, 47, 2188–2200.

    Article  Google Scholar 

  39. B. Burton, Mater. Sci. Eng., 1973, 11, 337

    Article  Google Scholar 

  40. G. L. Dunlop, J. O. Nilsson and P. R. Howell, J. Microsc-Oxford, 1979, 116, 115-22.

    Article  Google Scholar 

  41. J. Harris, Metal. Sci. J., 1973, 7, 1-6.

    Article  Google Scholar 

  42. F. A. Mohamed and T. G. Langdon, Acta Metall. Mater., 1974, 22, 779-88.

    Article  Google Scholar 

  43. A. J. Perry, J of Mater. Sci., 1974, 9, 1016-39.

    Article  Google Scholar 

  44. J. Wadsworth, O. A. Ruano and O. D. Sherby, Metall. Mater. Trans. A, 2002, 33, 219-29.

    Article  Google Scholar 

  45. W. Chen and M. Chaturvedi, Acta Mater., 1997, 45, 2735-746.

    Article  Google Scholar 

  46. B. Shassere, Y. Yamamoto, J. Poplawsky, W. Guo and S. S. Babu, Metall. Mater. Trans. A, 2017, 48, 4598-614.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Frederick List and Thomas Muth at Oak Ridge National Laboratory for their comments on this manuscript. The authors also thank Jeremy Moser for helping in conducting creep tests and Andres Rossy for obtaining the EBSD images. Further, the authors would like to acknowledge Dr. Anders Eklund at Qunitus Technologies for his help in providing the hot isostatic press capability to post-process the material used in this work. This research is sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Shassere.

Additional information

This manuscript has been authored [or, co-authored] by UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Manuscript submitted December 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shassere, B., Greeley, D., Okello, A. et al. Correlation of Microstructure to Creep Response of Hot Isostatically Pressed and Aged Electron Beam Melted Inconel 718. Metall Mater Trans A 49, 5107–5117 (2018). https://doi.org/10.1007/s11661-018-4812-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4812-z

Navigation