Skip to main content
Log in

Effect of Strain Rate and Temperature on Fracture and Microstructure Evolution of AZ91D Magnesium Alloy Processed by Laser Surface Melting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, microstructure evolution and fracture of the AZ91D magnesium alloy processed by laser surface melting (LSM) were investigated in the temperature range of room temperature (RT) ~ 350 °C and the strain rate range of 10−4 to 10−1 s−1. Macro fracture morphology of the LSM-treated sample was tortuous, and this was responsible for the improved strength compared to that of the as-received sample at different temperatures and strain rates. Micro fracture morphology of the laser-melted zone was always the ductile mode at different temperatures and strain rates, whereas micro fracture morphologies of the untreated zone were brittle fracture at RT and the ductile mode at high temperatures. Dynamic recrystallization was not observed in the laser-melted zone at different temperatures and strain rates, and this can contribute to the improved strength of the LSM-treated sample. In addition, the improved strength of the LSM-treated sample was also attributed to better thermal stability compared to that of the as-received sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.L. Mordike, and T. Ebert. Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.

    Article  Google Scholar 

  2. N.V. Dudamell, P.Hidalgo-Manrique, A.Chakkedath, Z.Chen, C.J.Boehlert, F.Gálvez, S.Yi, J.Bohlen, D.Letzig and M.T.Pérez-Prado: Mater. Sci. Eng. A, 2013, vol. 583, pp. 220-31.

    Article  Google Scholar 

  3. A. A. Luo: Int. Mater. Rev, 2004 vol. 49 pp. 13-30.

    Article  Google Scholar 

  4. W. W. Du, Y. S. Sun, X. G. Min, F. Xue, M. Zhu and D. Y. Wu: Mater. Sci. Eng. A, 2003, vol. 356, pp.1-7.

    Article  Google Scholar 

  5. F. Khomamizadeh, B. Nami, and S. Khoshkhooei: Metall. Mater. Trans. A, 2005, vol. 36, pp. 3489-94.

    Article  Google Scholar 

  6. R. Mahmudi, F. Kabirian, and Z. Nematollahi: Mater. Des, 2011 vol. 32, pp. 2583-9.

    Article  Google Scholar 

  7. A. Srinivasan, U. T. S. Pillai, and B. C. Pai: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2235-43.

    Article  Google Scholar 

  8. T.M. Pollock: Science, 2010, vol. 328, pp. 986-7.

    Article  Google Scholar 

  9. S. F. Hassan, and M. Gupta: Mater. Sci. Eng. A, 2006, vol. 425, pp. 22-7.

    Article  Google Scholar 

  10. V. Sklenička, M. Pahutová, K. Kuchařová, M. Svoboda, and T. G. Langdon: Metall. Mater. Trans. A, 2002, vol. 33, pp. 883-9.

    Article  Google Scholar 

  11. H.Z.Ye, and X.Y. Liu: J. Mater. Sci, 2004, vol. 39, pp. 6153-71.

    Article  Google Scholar 

  12. S. Jayalakshmi, S. V. Kailas, and S. Seshan: Compos Part A-Appl S, 2002, vol. 33, pp. 1135-40.

    Article  Google Scholar 

  13. S. F. Hassan, M. Paramsothy, F. Patel, and M. Gupta: Mater. Sci. Eng. A, 2012, vol. 558, pp. 278-84.

    Article  Google Scholar 

  14. S. F. Hassan, M. Paramsothy, Z. M. Gasem, F. Patel, and M. Gupta: J. Mater. Eng. Perform, 2014, vol. 23, pp. 2984-91.

    Article  Google Scholar 

  15. M. Rashad, F. S. Pan, D. Lin, and M. Asif: Mater. Des, 2016, vol. 89, pp. 1242-50.

    Article  Google Scholar 

  16. G. Abbas, L. Li, U. Ghazanfar, and Z. Liu: Wear, 2006, vol. 260, pp. 175-80.

    Article  Google Scholar 

  17. Y. K. Zhang, J. F. Chen, W. N. Lei, and R. J. Xv: Surf. Coat. Technol, 2008, vol. 202, pp. 3175-9.

    Article  Google Scholar 

  18. J. D. Majumdar, R. Galun, B. L. Mordike, and I. Manna: Mater. Sci. Eng. A, 2003, vol. 361, pp. 119-29.

    Article  Google Scholar 

  19. G. Abbs, Z. Liu, and P. Skeldon: Appl. Surf. Sci, 2005, vol. 247, pp. 347-53.

    Article  Google Scholar 

  20. A. E. Coy, F. Viejo, F. J. Garcia- Garcia, Z. Liu, P. Skeldon, and G. E. Thompson: Corros. Sci, 2010, vol. 52, pp. 387-97.

    Article  Google Scholar 

  21. K. F. Alabeedi, J. H. Abboud, and K. Y. Benyounis: Wear, 2009, vol. 266, pp. 925-33.

    Article  Google Scholar 

  22. P. C. Banerjee, R. K. S. Raman, Y. Durandet, and G. McAdam: Corros. Sci, 2011, vol. 53, pp. 1505-14.

    Article  Google Scholar 

  23. B. S. Yilbas, I. H. Toor, F. Patel, and M. A. Baig: J. Mater. Eng. Perform, 2013, vol. 22, pp. 1505-11.

    Article  Google Scholar 

  24. J. Grum, and R. Šturm: Appl. Surf. Sci, 2002, vol. 187, pp. 116-23.

    Article  Google Scholar 

  25. J. Grum, and J. M. Slabe: Appl. Surf. Sci, 2005, vol. 247, pp. 458-65.

    Article  Google Scholar 

  26. X. Tong, H. Zhou, Z. Z. Zhang, N. Sun, H. Y. Shan, and L. Q. Ren: Mater. Sci. Eng. A, 2007, vol. 467, pp. 97-103.

    Article  Google Scholar 

  27. Z. X. Jia, Y. W. Liu, J. Q. Li, L. J. Liu, and H. L. Li: Int. J. Fatigue, 2015, vol. 78, pp. 61-71.

    Article  Google Scholar 

  28. Z. B. Pang, H.Zhou, P. Zhang, D. L. Cong, C. Meng, C. W. Wang, and L. Q. Ren: Appl. Surf. Sci, 2015, vol. 331, pp. 179-84.

    Article  Google Scholar 

  29. C. W. Wang, H. Zhou, Z. Z. Zhang, Z. J. Jing, D. L. Cong, C. Meng, and L. Q. Ren: Appl. Surf. Sci, 2013, vol. 27, pp. 128-34.

    Google Scholar 

  30. C. W. Wang, H. Zhou, N. Liang, C. T. Wang, D. L. Cong, C. Meng, and L. Q. Ren: Appl. Surf. Sci, 2014, vol. 313, pp. 333-40.

    Article  Google Scholar 

  31. Z. Z. Zhang, P. Y. Lin, S. H. Kong, X. J. Li, and L. Q. Ren: Opt. Laser. Technol, 2015, vol. 70, pp. 1-6.

    Article  Google Scholar 

  32. C. Meng, Z. K. Chen, G. Li, and P. Dong: J. Alloy. Compd, 2017, vol. 711, pp. 258-66.

    Article  Google Scholar 

  33. A.K. Rodriguez, G. Kridli, G. Ayoub, and H. Zbib: J. Mater. Eng. Perform, 2013, vol. 22, pp. 3115-25.

    Article  Google Scholar 

  34. B. Gao, S.Z. Hao, J.X. Zou, W.Y. Wu, G.F. Tu, and C. Dong: Surf. Coat. Technol, 2007, vol. 201, pp. 6297-303.

    Article  Google Scholar 

  35. C. C. Liu, J. Liang, J. S. Zhou, L. Q. Wang, and Q. B. Li: Appl. Surf. Sci, 2015, vol. 343, pp. 133-40.

    Article  Google Scholar 

  36. J. Deng, Y. C. Lin, S. S. Li, J. Chen, and Y. Ding: Mater. Des, 2013, vol. 49, pp. 209-19.

    Article  Google Scholar 

  37. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plast, 2007, vol. 23, pp. 44-86.

    Article  Google Scholar 

  38. D.L. Cong, H. Zhou, M.Q. Yang, Z.H. Zhang, P. Zhang, C. Meng, and C.W. Wang: Opt. Laser. Technol, 2013, vol. 53, pp. 1-8.

    Article  Google Scholar 

  39. A.K. Rodriguez, G. A. Ayoub, B. Mansoor, and A. A. Benzerga: Acta. Mater, 2016, vol. 112, pp. 194-208.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Liaoning Province (No. 20170540421) and PhD Research Startup Fund of Liaoning Technical University (No. 16-1009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Meng.

Additional information

Manuscript submitted December 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, C., Chen, Z., Yang, H. et al. Effect of Strain Rate and Temperature on Fracture and Microstructure Evolution of AZ91D Magnesium Alloy Processed by Laser Surface Melting. Metall Mater Trans A 49, 5192–5204 (2018). https://doi.org/10.1007/s11661-018-4792-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4792-z

Navigation