Skip to main content
Log in

Effect of Compositional Changes of Laves Phase Precipitate on Grain Boundary Embrittlement in Long-Term Annealed 9 Pct Cr Ferritic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In 9 to 12 pct chromium steels, the high-temperature mechanical properties are known to be strongly dependent on the formation and coarsening of Laves phase precipitates at boundaries. During high-temperature deformation, the Laves phase precipitate coarsening to over a critical size has been considered to trigger cavity formation at the precipitate-matrix interfaces. This coarsening, accompanied by the diffusion of W, Mo, and Cr, should change the mechanical properties and chemical composition of both Laves phase precipitates and the matrix. In this study, we aimed to clarify the effects of compositional changes of Laves phase precipitates on cavity formation during coarsening. The values of the Fe/Cr and W/Mo ratios in Laves phase precipitates were shown to induce different levels of strain energy in the vicinity of the Laves phase precipitate, consequently promoting the formation of cavities. Therefore, the compositional change of Laves phase precipitates was found to play a critical role in the grain boundary embrittlement of high Cr steel at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. A. Aghajani, C. Somsen, G. Eggeler, Acta Mater., 2009, vol. 57, pp. 5093-106

    Article  Google Scholar 

  2. T. Gibbons, Trans. Indian Inst. Met., 2013, vol. 66, pp. 631-40

    Article  Google Scholar 

  3. G. Gupta, G.S. Was, Metall. Mater. Trans. A, 2008, vol. 39, pp. 150-64

    Article  Google Scholar 

  4. K. Maruyama, K. Sawada, J.-i. Koike, ISIJ Inter., 2001, vol. 41, pp. 641-53

    Article  Google Scholar 

  5. F. Masuyama, ISIJ Inter., 2001, vol. 41, pp. 612-25

    Article  Google Scholar 

  6. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine, Mater. Sci. Eng., A, 1999, vol. 267, pp. 19-25

    Article  Google Scholar 

  7. V.M. Chernov, M.V. Leont’eva-Smirnova, E.M. Mozhanov, N.S. Nikolaeva, A.N. Tyumentsev, N.A. Polekhina, I.Y. Litovchenko, E.G. Astafurova, Tech. Phys., 2016, vol. 61, pp. 209-14

    Article  Google Scholar 

  8. G. Golański, A. Zieliński, A. Zieliński-Lipiec, Mater. Sci. Eng. Tech., 2015, vol. 46, pp. 248-55

    Google Scholar 

  9. A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, R. Kriūkienė, Mater. Sci. Eng., A, 2017, vol. 696, pp. 453-460

    Article  Google Scholar 

  10. C.G. Panait, A. Zielińska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.-F. Gourgues-Lorenzon, W. Bendick, Mater. Sci. Eng., A, 2010, vol. 527, pp. 4062-9

    Article  Google Scholar 

  11. V. Thomas Paul, S. Saroja, M. Vijayalakshmi, J. Nucl. Mater., 2008, vol. 378, pp. 273-81

    Article  Google Scholar 

  12. J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Mater. Sci. Eng., A, 2006, vol. 428, pp. 270-5

    Article  Google Scholar 

  13. O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden, Intermetallics, 2013, vol. 32, pp. 362-72

    Article  Google Scholar 

  14. Y. Xu, M. Wang, Y. Wang, T. Gu, L. Chen, X. Zhou, Q. Ma, Y. Liu, J. Huang, J. Alloys Comp., 2015, vol. 621, pp. 93-98

    Article  Google Scholar 

  15. S.H. Goods, L.M. Brown, Acta Metall., 1979, vol. 27, pp. 1-15

    Article  Google Scholar 

  16. J.J. Lewandowski, C. Liu, W.H. Hunt, Mater. Sci. Eng., A, 1989, vol. 107, pp. 241-55

    Article  Google Scholar 

  17. L. Cipolla, A. Di Gianfrancesco, D. Venditti, G. Cumino, S. Caminada, Am. Soc. Mech. Eng., 2007, pp. 445–59

  18. F. Abe, H. Araki, T. Noda, Metall. Trans. A, 1991, vol. 22, pp. 2225-35

    Article  Google Scholar 

  19. F. Abe, S. Nakazawa, Metall. Trans. A, 1992, vol. 23, pp. 3025-34

    Article  Google Scholar 

  20. Y. de Carlan, A. Alamo, M.H. Mathon, G. Geoffroy, A. Castaing, J. Nucl. Mater., 2000, vol. 283, pp. 672-6

    Article  Google Scholar 

  21. A. Fujio, Sci. Tech. Adv. Mater., 2008, vol. 9, pp. 3002-16

    Google Scholar 

  22. A. Kipelova, A. Belyakov, R. Kaibyshev, Philos. Mag., 2013, vol. 93, pp. 2259-68

    Article  Google Scholar 

  23. M. Nie, J. Zhang, F. Huang, J.W. Liu, X.K. Zhu, Z.L. Chen, L.Z. Ouyang, J. Alloys Comp., 2014, vol. 588, pp. 348-56

    Article  Google Scholar 

  24. W. Wang, W. Yan, W. Sha, Y. Shan, K. Yang, Metall. Mater. Trans. A, 2012, vol. 43, pp. 4113-22

    Article  Google Scholar 

  25. P. Hofer, H. Cerjak, B. Schaffernak, P. Warbichler, Steel Res., 1998, vol. 69, pp. 343-8

    Article  Google Scholar 

  26. I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, Mater. Sci. Eng., A, 2014, vol. 615, pp. 153-63

    Article  Google Scholar 

  27. G. Dimmler, P. Weinert, E. Kozeschnik, H. Cerjak, Mater. Charact., 2003, vol. 51, pp. 341-52

    Article  Google Scholar 

  28. A.J. Ardell, Acta Metall., 1972, vol. 20, pp. 61-71

    Article  Google Scholar 

  29. A.D. Brailsford, P. Wynblatt, Acta Metall., 1979, vol. 27, pp. 489-97

    Article  Google Scholar 

  30. X. Wang, Q. Xu, S.-m. Yu, L. Hu, H. Liu, Y.-y. Ren, Mater. Chem. Phys., 2015, vol. 163, pp. 219-28

    Article  Google Scholar 

  31. H. Ghassemi Armaki, R. Chen, K. Maruyama, M. Igarashi, Mater. Sci. Eng., A, 2010, vol. 527, pp. 6581-8

    Article  Google Scholar 

  32. 32. V. Vodarek, A. Strang, Mater. Chem. Phys., 2003, vol. 81, pp. 480-2

    Article  Google Scholar 

  33. F. R. N. Nabarro, Math. Phys. Sci., 1940, vol. 175, pp. 519-38

    Article  Google Scholar 

  34. F. Emiliana, P. Daniele, T. Enrico, Sci. Tech. Adv. Mater., 2010, vol. 11, pp. 4503-11

    Google Scholar 

  35. A.R. Denton, N.W. Ashcroft, Phys. Rev. A, 1991, vol. 43, pp. 3161-4

    Article  Google Scholar 

  36. Z.Q. Lv, Z.F. Zhang, Q. Zhang, Z.H. Wang, S.H. Sun, W.T. Fu, Solid State Sci., 2016, vol. 56, pp. 16-22

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Resources Development program (No. 20174030201830) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korean Government Ministry of Trade, Industry and Energy and the National Research Council of Science & Technology (NST) Grant by the Korean Government (MSIT) (No. CRC-15-03-KIMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongryoul Kim.

Additional information

Manuscript submitted April 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, C., Kim, R., Heo, J.H. et al. Effect of Compositional Changes of Laves Phase Precipitate on Grain Boundary Embrittlement in Long-Term Annealed 9 Pct Cr Ferritic Steel. Metall Mater Trans A 49, 4595–4603 (2018). https://doi.org/10.1007/s11661-018-4782-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4782-1

Navigation