Skip to main content
Log in

Experimental and Numerical Investigation of the Thermal Effects on Railway Wheels for Shoe-Braked High-Speed Train Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An improved railway wheel steel containing higher contents of C, Mn, Si, and V than the traditional ER7 steel was developed by alloy design for shoe-braked high-speed train applications. The effects of the thermal load on the microstructure and mechanical properties of a wheel made from this steel were investigated using a combined experimental and numerical approach. The wheel braking was studied using finite element simulations that account for the thermal loading of the wheel in order to find the temperatures reached in the wheel rim. Hardness measurements, tensile tests, toughness tests, fatigue crack growth tests, and microstructural observations were carried out on samples extracted from real wheels, with and without heat treatments simulating the modification of the microstructure due to the shoe braking. The results on the un-treated samples showed that the improved steel has a better combination of strength and toughness than ER7 steel. The results on the heat-treated samples showed that the improved steel maintains acceptable mechanical properties provided the maximum temperature during braking is below the A3 temperature of the steel (around 790 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Orringer, D. E. Geay: Theor. Appl. Fract. Mech., 1995, vol. 23, pp. 55–65.

    Article  Google Scholar 

  2. G. J. Moyar, D. H. Stone: Wear, 1991, vol. 144, pp. 117–38.

    Article  Google Scholar 

  3. F. Walther, D. Eifler: Mater. Test., 2004, vol. 46, pp. 158–162.

    Article  Google Scholar 

  4. T. Vernersson and R. Lundén: Proc IMechE, Part F: J. Rail Rapid Transit, 2007, vol. 221(4), pp. 443 – 454.

    Google Scholar 

  5. A. Esmaeili, M. S. Walia, K. Handa, K. Ikeuchi, M. Ekh, T. Vernersson, J. Ahlström: Int. J. Fatigue, 2017, vol. 105, pp. 71 – 85.

    Article  Google Scholar 

  6. S. Caprioli, T. Vernersson, K. Handa, K. Ikeuchi: Tribol. Int., 2016, vol. 94, pp. 409 – 420.

    Article  Google Scholar 

  7. D. Nikas, J. Ahlström, A. Malakizadi: Wear, 2016, vol. 366-367, pp. 407 – 415.

    Article  Google Scholar 

  8. J. Ahlström, B. Karlsson: Wear, 1999, vol. 232 (1), pp. 1–14.

    Article  Google Scholar 

  9. J. Ahlström, B. Karlsson: Wear, 1999, vol. 232 (1), pp. 15–24.

    Article  Google Scholar 

  10. S. H. Avner: Introduction to Physical Metallurgy, 2nd ed. India: Tata Mcgraw Hill Pub., 1997.

    Google Scholar 

  11. J. Jergéus: IMechE J. Rail Rapid Transit, 1998, vol. 212, pp. 69 – 79.

    Google Scholar 

  12. K. Handa, Y. Kimura and Y. Mishima: Wear, 2010, vol. 268 (1), pp. 50 – 58.

    Article  Google Scholar 

  13. U. Singh, A. Popli, D. Jain, B. Roy, S. Jha: J. Mater. Eng. Perform., 2003, vol. 12, pp. 573 – 580.

    Article  Google Scholar 

  14. D. Zeng, L. Lu, Y. Gong, N. Zhang, Y. Gong: Mater. Des., 2016, vol. 92, pp. 998 – 1006.

    Article  Google Scholar 

  15. Z. X. Liu, H. C. Gu: J. Mater. Eng. Perform., 2000, vol. 9, pp. 580 – 584.

    Article  Google Scholar 

  16. T. Gladman, I. McIvor, F. Pickering: J. Iron Steel Inst., 1972, vol. 210, pp. 916 – 930.

    Google Scholar 

  17. J. Hyzak and I. Bernstein: Metall. Mater. Trans. A, 1976, vol. 7A (7), pp. 1217 – 1224.

    Article  Google Scholar 

  18. O. P. Modi, N. Deshmukh, D. P. Mondal, A. K. Jha, A. H. Yegneswaran and H. K. Khaira: Mater. Charact., 2001, vol. 46 (5), pp. 347 – 352.

    Article  Google Scholar 

  19. A. Marder and B. Bramfitt: Metall. Mater. Trans. A, 1976, vol. 7A (2), pp. 365 – 372.

    Article  Google Scholar 

  20. D. Zeng, L. Lu, Y. Gong, Y. Zhang, J.Zhang: Wear, 2017, vol. 372-373, pp. 158 – 168.

    Article  Google Scholar 

  21. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, T. Maki: Acta Mater., 2007, vol. 55, pp. 5027 – 5038.

    Article  Google Scholar 

  22. K. Cvetkovski, J. Ahlström, B. Karlsson: Wear, 2011, vol. 271, pp. 382 – 387.

    Article  Google Scholar 

  23. K. Cvetkovski, J. Ahlström, B. Karlsson: Mater. Sci. Technol., 2011, vol. 27, pp. 648 – 654.

    Article  Google Scholar 

  24. T. Vernersson: Proc IMechE, Part F: J. Rail Rapid Transit, 2007, vol. 221(2), pp. 167– 182.

    Google Scholar 

  25. T. Vernersson: Proc IMechE, Part F: J. Rail Rapid Transit, 2007, vol. 221(4), pp. 429 – 442.

    Google Scholar 

  26. M. Diener, A. Ghidini: Mater. Perform. and Charact., 2014, vol. 3 (3), pp. 286 – 304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Faccoli.

Additional information

Manuscript submitted November 22, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faccoli, M., Ghidini, A. & Mazzù, A. Experimental and Numerical Investigation of the Thermal Effects on Railway Wheels for Shoe-Braked High-Speed Train Applications. Metall Mater Trans A 49, 4544–4554 (2018). https://doi.org/10.1007/s11661-018-4749-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4749-2

Navigation