Consequences of a Room-Temperature Plastic Deformation During Processing on Creep Durability of a Ni-Based SX Superalloy

Abstract

Ni-based single crystalline superalloys are used for high-pressure parts of aero-engines due to their superior mechanical properties and very good oxidation resistance at high temperature. However, shocks or unexpected mismatch in thermal contraction between molds and castings can occur during casting process and subsequent heat treatments, inducing plastic deformation of the alloy at low temperature. To mimic such events, a tensile plastic deformation is applied at room temperature on solutioned AM1 specimens and followed by standard aging heat treatments. Faster growth of the γ′ precipitates inside plastically deformed bands is obtained after full heat treatment with no lattice rotation or recrystallization. It has however been evidenced that the applied deformation has a detrimental impact on the creep properties, especially at high temperature (above 950 °C). It partly results from a highly localized failure process along former slip bands in which recrystallization is observed. The evolution of the microstructure during creep tests of prior deformed and nondeformed specimens has been thoroughly investigated to better identify under which conditions recrystallization occurs inside the bands during a creep test and by which mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361-374.

    Article  Google Scholar 

  2. 2.

    R.C. Reed: The Superalloys - Fundamentals and Applications, 1st ed., Cambridge University Press, Cambridge, 2006, pp. 121-211.

    Google Scholar 

  3. 3.

    P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173-194.

    Article  Google Scholar 

  4. 4.

    P. Caron and T. Khan: 8th International Conference on the Strength of Metals and Alloys, 1988.

  5. 5.

    P. Caron, P.J. Henderson, T. Khan, and M. McLean: Scripta Metall. Mater., 1986, vol. 20, pp. 875-880.

    Article  Google Scholar 

  6. 6.

    P. Caron, Y. Ohta, Y.G. Nakagawa, and T. Khan: in Superalloys 1988 Proc. of the Minerals, Metals and Materials Society, Warrendale, 1988, pp. 215–24.

  7. 7.

    S. Pierret, T. Etter, A. Evans, and H. Van Swygenhoven: Acta Mater., 2013, vol. 61, pp. 1478-1488.

    Article  Google Scholar 

  8. 8.

    H. N. Mathur, C. Panwisawas, C. N. Jones, R. C. Reed, C. M.F. Rae and D. Phil: Acta Mater., 2017, vol. 129, pp. 112-123.

    Article  Google Scholar 

  9. 9.

    R. Bürgel, P. D. Portella and J. Preuhs: Superalloys 2000, TMS, 2000, pp. 229–38.

  10. 10.

    X.-M. Chen, Y. C. Lin, D. X. Wen, J. L. Zhang and M. He: Mater. Des., 2014, vol. 57, pp. 568-577.

    Article  Google Scholar 

  11. 11.

    D. Cox, B. Roebuck, C. M. F. Rae and R. C. Reed: Mater. Sci. Tech., 2003, vol. 19, pp. 440-446.

    Article  Google Scholar 

  12. 12.

    R. D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett: Mat. Sci. Eng. A, 1997, vol. 238, pp. 219-274.

    Article  Google Scholar 

  13. 13.

    L. Zhonglin, X. Jichun, X. Qingyan, L. Jiarong and L. Baicheng: J. Mater. Process. Tech., 2015, vol. 217, pp. 1-12.

    Article  Google Scholar 

  14. 14.

    C. Panwisawas, H. Mathur, J.-C. Gebelin, D.C. Putman, P. Withey, N. Warnken, C.M.F. Rae and R.C. Reed: Superalloys 2012: TMS, 2012, pp. 547–56.

  15. 15.

    Z. Li, Q. Xu and B. Liu: J. Alloy Compd., 2016, vol. 672, pp. 457-469.

    Article  Google Scholar 

  16. 16.

    Z. Li, X. Fan, Q. Xu and B. Liu: Mater. Lett., 2015, vol. 160, pp. 318-322.

    Article  Google Scholar 

  17. 17.

    B. G. Choi, C. Y. Jo, H. U. Hong, I. S. Kim, S. M. Seo, and H. M. Kim: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1291-1296.

    Article  Google Scholar 

  18. 18.

    L. Tian, C. Xu and C. Ma: Mater. Charact., 2017, vol. 127, pp. 116-120.

    Article  Google Scholar 

  19. 19.

    M. Sakaguchi and M. Okazaki: Mat. Sci. Eng. A, 2018, vol. 710, pp.121-128.

    Article  Google Scholar 

  20. 20.

    J. H. Davidson, A. Fredholm, T. Khan and J.-M. Théret: Patent FR 2557598 / US 4693280, 1986.

  21. 21.

    J. Cormier, M. Jouiad, F. Hamon, P. Villechaise and X. Milhet: Philos. Mag. Lett., 2010, vol. 90, pp. 611-620.

    Article  Google Scholar 

  22. 22.

    M. Bensch, C.H. Konrad, E. Fleischmann, C.M.F. Rae and U. Glatzel: Mater. Sci. Eng. A, 2013, vol. 577, pp. 179-188.

    Article  Google Scholar 

  23. 23.

    F. Riallant, J. Cormier, A. Longuet, X. Milhet and J. Mendez: Met. Mat. Trans. A, 2014, vol. 45A, pp. 351-360.

    Article  Google Scholar 

  24. 24.

    F. Mauget, F. Hamon, M. Morisset, J. Cormier, F. Riallant, and J. Mendez: Int. J. Fatigue, 2017, vol. 99, pp. 225-34.

    Article  Google Scholar 

  25. 25.

    V. Caccuri, J. Cormier and R. Desmorat: Mater. Des., 2017, vol. 131, pp. 487-497.

    Article  Google Scholar 

  26. 26.

    K. Thompson, D. Lawrence, D. J. Larson, J. D. Olson, T. F. Kelly and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131-139.

    Article  Google Scholar 

  27. 27.

    M.-A. Charpagne, P. Vennegues, T. Billot, J.-M. Franchet and N. Bozzolo: J. Microsc., 2016, vol. 263, pp. 106-112.

    Article  Google Scholar 

  28. 28.

    M. Sakaguchi, M. Ike, and M. Okazaki: Mat. Sci. Eng. A, 2012, vol. 534, pp. 253-259.

    Article  Google Scholar 

  29. 29.

    L. Dirand, J. Cormier, A. Jacques, J.-P. Chateau-Cornu, T. Schenk, O. Ferry and P. Bastie: Mater. Charact., 2013, vol. 77, pp. 32-46.

    Article  Google Scholar 

  30. 30.

    A. Epishin, T. Link and G. Nolze: J. Microsc., 2007, vol. 228, pp. 110-117.

    Article  Google Scholar 

  31. 31.

    J. Cormier: Superalloys 2016, TMS, 2016, pp. 385–94.

  32. 32.

    P. Caron, C. Ramusat and F. Diologent: Superalloys. 2008, TMS, 2008, pp. 159–67.

  33. 33.

    G.L. Drew, R.C. Reed, K. Kakehi and C.M.F. Rae: Superalloys 2004, TMS, 2004, pp. 127–36.

  34. 34.

    M.-A. Charpagne, T. Billot, J.-M. Franchet and N. Bozzolo, J. Alloys and Compd., 2016, vol. 688, pp. 685-694.

    Article  Google Scholar 

  35. 35.

    M.-A. Charpagne, J.-M. Franchet and N. Bozzolo: Mater. Des., 2018, vol. 144, pp. 353-360.

    Article  Google Scholar 

  36. 36.

    J.J. Moverare, S. Johansson and R.C. Reed: Acta Mater., 2009, vol. 57, pp. 2266-2276.

    Article  Google Scholar 

  37. 37.

    M. Segersäll, P. Kontis, S. Pedrazzini, P.A. Bagot, M.P. Moody, J.J. Moverare and R.C. Reed: Acta Mater., 2015, vol. 95, pp. 456-467.

    Article  Google Scholar 

  38. 38.

    R.C. Reed, D.C. Cox and C.M.F. Rae: Mat. Sci. Eng. A, 2007, vol. 448, pp. 88-96.

    Article  Google Scholar 

  39. 39.

    G. Malzer, R.W. Hayes, T. Mack and G. Eggeler, Met. Mat. Trans. A, 2007, vol. 38A, pp. 314-327.

    Article  Google Scholar 

  40. 40.

    J.-B. le Graverend, J. Adrien and J. Cormier: Mat. Sci. Eng. A, 2017, vol. 695, pp. 367-378.

    Article  Google Scholar 

  41. 41.

    A. Cervellon, J. Cormier, F. Mauget and Z. Hervier : Int. J. Fatigue, 2017, vol. 104, pp. 251-262.

    Article  Google Scholar 

  42. 42.

    P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe and B. Gault: Scr. Mater., 2018, vol. 148, pp. 76-80.

    Article  Google Scholar 

  43. 43.

    P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe and B. Gault: Scr. Mater., 2018, vol. 147, pp. 59-63.

    Article  Google Scholar 

  44. 44.

    M.C. Pandey, A.K. Mukherjee and D.M.R. Taplin: Metall. Trans. A, 1984, vol. 15, pp. 1437-1441.

    Article  Google Scholar 

  45. 45.

    Y.H. Zhang and D.M. Knowles: Mater. Sci. Technol., 2002, vol. 18, pp. 917-923.

    Article  Google Scholar 

  46. 46.

    K.C. Antony and G.W. Goward, Superalloys 1988, TMS, 1988, pp. 745–54.

  47. 47.

    B.F. Dyson and D.E. Henn, The effect of room temperature pre‐strain on grain boundary cavitation in Nimonic 80A, Journal of Microscopy 1973, vol. 97, pp. 165-170.

    Article  Google Scholar 

  48. 48.

    B.F. Dyson and M.J. Rodgers, Prestrain, cavitation, and creep ductility, Metal Science 1974, vol. 8, pp. 261-266.

    Article  Google Scholar 

  49. 49.

    M. Feller-Kniepmeier, T. Link, I. Poschmann, G. Scheunemann-Frerker, C. Schulze: Acta Mater., 1996, vol. 44, pp. 2397–2407.

    Article  Google Scholar 

  50. 50.

    H. Mughrabi: Mater. Sci. Technol., 2009, vol. 25, pp. 191-204.

    Article  Google Scholar 

  51. 51.

    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1994, vol. 42, pp. 1859-1874.

    Article  Google Scholar 

  52. 52.

    R.C. Reed, D.C. Cox and C.M.F. Rae: Mater. Sci. Technol., 2007. 23: p. 893-902.

    Article  Google Scholar 

  53. 53.

    M. Kamaraj: Sadhana, 2003, vol. 28, pp. 115-128.

    Article  Google Scholar 

  54. 54.

    L. Zhuo, T. Xu, F. Wang, J. Xiong and J. Zhu: Mater. Lett., 2015, vol. 148, pp. 159-162.

    Article  Google Scholar 

  55. 55.

    B. Reppich: Acta Metall., 1982, vol. 30(1), pp. 87-94.

    Article  Google Scholar 

  56. 56.

    B. Reppich, W. Kühlein, G. Meyer, P. Puppel, M. Schulz and G. Schumann: Mater. Sci. Eng., 1986, vol. 83, pp. 45-63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Dierk Raabe and Dr. Baptiste Gault (both from Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany) for the interpretation of APT results and fruitful scientific discussions. The authors thank Dr. Susanne Steuer, formerly at the Institut Pprime and UCSB and now at Thyssenkrupp for technical assistance on creep testing. The authors also gratefully acknowledge the fruitful scientific discussions on recrystallization with Dr. Nicolas Leriche (from Safran Aircraft Engines, Gennevilliers, France).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah Hamadi.

Additional information

Manuscript submitted March 9, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamadi, S., Hamon, F., Delautre, J. et al. Consequences of a Room-Temperature Plastic Deformation During Processing on Creep Durability of a Ni-Based SX Superalloy. Metall Mater Trans A 49, 4246–4261 (2018). https://doi.org/10.1007/s11661-018-4748-3

Download citation