Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4246–4261 | Cite as

Consequences of a Room-Temperature Plastic Deformation During Processing on Creep Durability of a Ni-Based SX Superalloy

  • Sarah HamadiEmail author
  • Florence Hamon
  • Joël Delautre
  • Jonathan Cormier
  • Patrick Villechaise
  • Satoshi Utada
  • Paraskevas Kontis
  • Nathalie Bozzolo
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


Ni-based single crystalline superalloys are used for high-pressure parts of aero-engines due to their superior mechanical properties and very good oxidation resistance at high temperature. However, shocks or unexpected mismatch in thermal contraction between molds and castings can occur during casting process and subsequent heat treatments, inducing plastic deformation of the alloy at low temperature. To mimic such events, a tensile plastic deformation is applied at room temperature on solutioned AM1 specimens and followed by standard aging heat treatments. Faster growth of the γ′ precipitates inside plastically deformed bands is obtained after full heat treatment with no lattice rotation or recrystallization. It has however been evidenced that the applied deformation has a detrimental impact on the creep properties, especially at high temperature (above 950 °C). It partly results from a highly localized failure process along former slip bands in which recrystallization is observed. The evolution of the microstructure during creep tests of prior deformed and nondeformed specimens has been thoroughly investigated to better identify under which conditions recrystallization occurs inside the bands during a creep test and by which mechanism.



The authors are grateful to Professor Dierk Raabe and Dr. Baptiste Gault (both from Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany) for the interpretation of APT results and fruitful scientific discussions. The authors thank Dr. Susanne Steuer, formerly at the Institut Pprime and UCSB and now at Thyssenkrupp for technical assistance on creep testing. The authors also gratefully acknowledge the fruitful scientific discussions on recrystallization with Dr. Nicolas Leriche (from Safran Aircraft Engines, Gennevilliers, France).


  1. 1.
    T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361-374.CrossRefGoogle Scholar
  2. 2.
    R.C. Reed: The Superalloys - Fundamentals and Applications, 1st ed., Cambridge University Press, Cambridge, 2006, pp. 121-211.Google Scholar
  3. 3.
    P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173-194.CrossRefGoogle Scholar
  4. 4.
    P. Caron and T. Khan: 8th International Conference on the Strength of Metals and Alloys, 1988.Google Scholar
  5. 5.
    P. Caron, P.J. Henderson, T. Khan, and M. McLean: Scripta Metall. Mater., 1986, vol. 20, pp. 875-880.CrossRefGoogle Scholar
  6. 6.
    P. Caron, Y. Ohta, Y.G. Nakagawa, and T. Khan: in Superalloys 1988 Proc. of the Minerals, Metals and Materials Society, Warrendale, 1988, pp. 215–24.Google Scholar
  7. 7.
    S. Pierret, T. Etter, A. Evans, and H. Van Swygenhoven: Acta Mater., 2013, vol. 61, pp. 1478-1488.CrossRefGoogle Scholar
  8. 8.
    H. N. Mathur, C. Panwisawas, C. N. Jones, R. C. Reed, C. M.F. Rae and D. Phil: Acta Mater., 2017, vol. 129, pp. 112-123.CrossRefGoogle Scholar
  9. 9.
    R. Bürgel, P. D. Portella and J. Preuhs: Superalloys 2000, TMS, 2000, pp. 229–38.Google Scholar
  10. 10.
    X.-M. Chen, Y. C. Lin, D. X. Wen, J. L. Zhang and M. He: Mater. Des., 2014, vol. 57, pp. 568-577.CrossRefGoogle Scholar
  11. 11.
    D. Cox, B. Roebuck, C. M. F. Rae and R. C. Reed: Mater. Sci. Tech., 2003, vol. 19, pp. 440-446.CrossRefGoogle Scholar
  12. 12.
    R. D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett: Mat. Sci. Eng. A, 1997, vol. 238, pp. 219-274.CrossRefGoogle Scholar
  13. 13.
    L. Zhonglin, X. Jichun, X. Qingyan, L. Jiarong and L. Baicheng: J. Mater. Process. Tech., 2015, vol. 217, pp. 1-12.CrossRefGoogle Scholar
  14. 14.
    C. Panwisawas, H. Mathur, J.-C. Gebelin, D.C. Putman, P. Withey, N. Warnken, C.M.F. Rae and R.C. Reed: Superalloys 2012: TMS, 2012, pp. 547–56.Google Scholar
  15. 15.
    Z. Li, Q. Xu and B. Liu: J. Alloy Compd., 2016, vol. 672, pp. 457-469.CrossRefGoogle Scholar
  16. 16.
    Z. Li, X. Fan, Q. Xu and B. Liu: Mater. Lett., 2015, vol. 160, pp. 318-322.CrossRefGoogle Scholar
  17. 17.
    B. G. Choi, C. Y. Jo, H. U. Hong, I. S. Kim, S. M. Seo, and H. M. Kim: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1291-1296.CrossRefGoogle Scholar
  18. 18.
    L. Tian, C. Xu and C. Ma: Mater. Charact., 2017, vol. 127, pp. 116-120.CrossRefGoogle Scholar
  19. 19.
    M. Sakaguchi and M. Okazaki: Mat. Sci. Eng. A, 2018, vol. 710, pp.121-128.CrossRefGoogle Scholar
  20. 20.
    J. H. Davidson, A. Fredholm, T. Khan and J.-M. Théret: Patent FR 2557598 / US 4693280, 1986.Google Scholar
  21. 21.
    J. Cormier, M. Jouiad, F. Hamon, P. Villechaise and X. Milhet: Philos. Mag. Lett., 2010, vol. 90, pp. 611-620.CrossRefGoogle Scholar
  22. 22.
    M. Bensch, C.H. Konrad, E. Fleischmann, C.M.F. Rae and U. Glatzel: Mater. Sci. Eng. A, 2013, vol. 577, pp. 179-188.CrossRefGoogle Scholar
  23. 23.
    F. Riallant, J. Cormier, A. Longuet, X. Milhet and J. Mendez: Met. Mat. Trans. A, 2014, vol. 45A, pp. 351-360.CrossRefGoogle Scholar
  24. 24.
    F. Mauget, F. Hamon, M. Morisset, J. Cormier, F. Riallant, and J. Mendez: Int. J. Fatigue, 2017, vol. 99, pp. 225-34.CrossRefGoogle Scholar
  25. 25.
    V. Caccuri, J. Cormier and R. Desmorat: Mater. Des., 2017, vol. 131, pp. 487-497.CrossRefGoogle Scholar
  26. 26.
    K. Thompson, D. Lawrence, D. J. Larson, J. D. Olson, T. F. Kelly and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131-139.CrossRefGoogle Scholar
  27. 27.
    M.-A. Charpagne, P. Vennegues, T. Billot, J.-M. Franchet and N. Bozzolo: J. Microsc., 2016, vol. 263, pp. 106-112.CrossRefGoogle Scholar
  28. 28.
    M. Sakaguchi, M. Ike, and M. Okazaki: Mat. Sci. Eng. A, 2012, vol. 534, pp. 253-259.CrossRefGoogle Scholar
  29. 29.
    L. Dirand, J. Cormier, A. Jacques, J.-P. Chateau-Cornu, T. Schenk, O. Ferry and P. Bastie: Mater. Charact., 2013, vol. 77, pp. 32-46.CrossRefGoogle Scholar
  30. 30.
    A. Epishin, T. Link and G. Nolze: J. Microsc., 2007, vol. 228, pp. 110-117.CrossRefGoogle Scholar
  31. 31.
    J. Cormier: Superalloys 2016, TMS, 2016, pp. 385–94.Google Scholar
  32. 32.
    P. Caron, C. Ramusat and F. Diologent: Superalloys. 2008, TMS, 2008, pp. 159–67.Google Scholar
  33. 33.
    G.L. Drew, R.C. Reed, K. Kakehi and C.M.F. Rae: Superalloys 2004, TMS, 2004, pp. 127–36.Google Scholar
  34. 34.
    M.-A. Charpagne, T. Billot, J.-M. Franchet and N. Bozzolo, J. Alloys and Compd., 2016, vol. 688, pp. 685-694.CrossRefGoogle Scholar
  35. 35.
    M.-A. Charpagne, J.-M. Franchet and N. Bozzolo: Mater. Des., 2018, vol. 144, pp. 353-360.CrossRefGoogle Scholar
  36. 36.
    J.J. Moverare, S. Johansson and R.C. Reed: Acta Mater., 2009, vol. 57, pp. 2266-2276.CrossRefGoogle Scholar
  37. 37.
    M. Segersäll, P. Kontis, S. Pedrazzini, P.A. Bagot, M.P. Moody, J.J. Moverare and R.C. Reed: Acta Mater., 2015, vol. 95, pp. 456-467.CrossRefGoogle Scholar
  38. 38.
    R.C. Reed, D.C. Cox and C.M.F. Rae: Mat. Sci. Eng. A, 2007, vol. 448, pp. 88-96.CrossRefGoogle Scholar
  39. 39.
    G. Malzer, R.W. Hayes, T. Mack and G. Eggeler, Met. Mat. Trans. A, 2007, vol. 38A, pp. 314-327.CrossRefGoogle Scholar
  40. 40.
    J.-B. le Graverend, J. Adrien and J. Cormier: Mat. Sci. Eng. A, 2017, vol. 695, pp. 367-378.CrossRefGoogle Scholar
  41. 41.
    A. Cervellon, J. Cormier, F. Mauget and Z. Hervier : Int. J. Fatigue, 2017, vol. 104, pp. 251-262.CrossRefGoogle Scholar
  42. 42.
    P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe and B. Gault: Scr. Mater., 2018, vol. 148, pp. 76-80.CrossRefGoogle Scholar
  43. 43.
    P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe and B. Gault: Scr. Mater., 2018, vol. 147, pp. 59-63.CrossRefGoogle Scholar
  44. 44.
    M.C. Pandey, A.K. Mukherjee and D.M.R. Taplin: Metall. Trans. A, 1984, vol. 15, pp. 1437-1441.CrossRefGoogle Scholar
  45. 45.
    Y.H. Zhang and D.M. Knowles: Mater. Sci. Technol., 2002, vol. 18, pp. 917-923.CrossRefGoogle Scholar
  46. 46.
    K.C. Antony and G.W. Goward, Superalloys 1988, TMS, 1988, pp. 745–54.Google Scholar
  47. 47.
    B.F. Dyson and D.E. Henn, The effect of room temperature pre‐strain on grain boundary cavitation in Nimonic 80A, Journal of Microscopy 1973, vol. 97, pp. 165-170.CrossRefGoogle Scholar
  48. 48.
    B.F. Dyson and M.J. Rodgers, Prestrain, cavitation, and creep ductility, Metal Science 1974, vol. 8, pp. 261-266.CrossRefGoogle Scholar
  49. 49.
    M. Feller-Kniepmeier, T. Link, I. Poschmann, G. Scheunemann-Frerker, C. Schulze: Acta Mater., 1996, vol. 44, pp. 2397–2407.CrossRefGoogle Scholar
  50. 50.
    H. Mughrabi: Mater. Sci. Technol., 2009, vol. 25, pp. 191-204.CrossRefGoogle Scholar
  51. 51.
    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1994, vol. 42, pp. 1859-1874.CrossRefGoogle Scholar
  52. 52.
    R.C. Reed, D.C. Cox and C.M.F. Rae: Mater. Sci. Technol., 2007. 23: p. 893-902.CrossRefGoogle Scholar
  53. 53.
    M. Kamaraj: Sadhana, 2003, vol. 28, pp. 115-128.CrossRefGoogle Scholar
  54. 54.
    L. Zhuo, T. Xu, F. Wang, J. Xiong and J. Zhu: Mater. Lett., 2015, vol. 148, pp. 159-162.CrossRefGoogle Scholar
  55. 55.
    B. Reppich: Acta Metall., 1982, vol. 30(1), pp. 87-94.CrossRefGoogle Scholar
  56. 56.
    B. Reppich, W. Kühlein, G. Meyer, P. Puppel, M. Schulz and G. Schumann: Mater. Sci. Eng., 1986, vol. 83, pp. 45-63.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Sarah Hamadi
    • 1
    Email author
  • Florence Hamon
    • 2
  • Joël Delautre
    • 1
  • Jonathan Cormier
    • 2
  • Patrick Villechaise
    • 2
  • Satoshi Utada
    • 1
    • 2
  • Paraskevas Kontis
    • 3
  • Nathalie Bozzolo
    • 4
  1. 1.Safran Aircraft EnginesMoissy-CramayelFrance
  2. 2.Institut Pprime, UPR CNRS 3346, Physics and Mechanics of Materials Department, ISAE-ENSMAFuturoscope-Chasseneuil CedexFrance
  3. 3.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  4. 4.MINES ParisTech, PSL Research University, CEMEF - Centre de mise en forme des matériaux, CNRS, UMR 7635Sophia Antipolis CedexFrance

Personalised recommendations