Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4058–4069 | Cite as

High-Temperature Oxidation Behavior of a Novel Co-Base Superalloy

  • Stéphane A. J. Forsik
  • Alberto O. Polar Rosas
  • Tao Wang
  • Gian A. Colombo
  • Ning Zhou
  • Samuel J. Kernion
  • Mario E. Epler
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications

Abstract

A new polycrystalline γ′-strengthened cobalt-base superalloy with improved oxidation resistance up to 1100 °C is presented. Based on the Co-Al-W-Ni-Cr-Ti system, the chemistry was optimized via computational thermodynamics, and an 18 kg ingot was successfully melted under vacuum and processed. During cyclic oxidation trials at 800 °C, 1000 °C, and 1100 °C, the Co-base superalloy gained significantly less mass per surface area than the benchmark Waspaloy tested in similar conditions. X-ray diffraction and EDS analysis of the oxidized surface showed that a continuous layer of Al2O3 forms between the substrate and the external oxides, providing the necessary oxidation resistance.

Notes

Acknowledgments

The authors would like to thank Karl A. Heck, R&D, Carpenter Technology for the useful discussions on high-temperature oxidation, and Mark T. Burton, Ryan T. Fergusson, and Gina L. Wendel, R&D, Carpenter Technology for their support with the X-ray diffraction analysis, heat treatments, and sample preparation.

References

  1. 1.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.CrossRefGoogle Scholar
  2. 2.
    A. Suzuki and T.M. Pollock: Acta Mater., 2008, vol. 56, pp. 1288–97.CrossRefGoogle Scholar
  3. 3.
    A. Suzuki, H. Inui, and T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 345–68.CrossRefGoogle Scholar
  4. 4.
    F.S. Pettit and G.H. Meier: Superalloys 1984, 1984, pp. 651–87.Google Scholar
  5. 5.
    X. Peng and F. Wang. In: Aerospace Materials Handbook, CRC Press, Boca Raton, 2012, pp. 237–80.Google Scholar
  6. 6.
    P. Berthod: Oxid. Met., 2005, vol. 64, pp. 235–52.CrossRefGoogle Scholar
  7. 7.
    J.L. Smialek and G.H. Meier: Superalloys II, 2nd ed., John Wiley & Sons, New York, NY, 1997, pp. 293–26.Google Scholar
  8. 8.
    D.J. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam, 2008.Google Scholar
  9. 9.
    H.-Y. Yan, V.A. Vorontsov, and D. Dye: Corros. Sci., 2014, vol. 83, pp. 382–95.CrossRefGoogle Scholar
  10. 10.
    L. Klein, A. Zendegani, M. Palumbo, S.G. Fries, and S. Virtanen: Corros. Sci., 2014, vol. 89, pp. 1–5.CrossRefGoogle Scholar
  11. 11.
    L. Klein, A. Bauer, S. Neumeier, M. Göken, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2027–34.CrossRefGoogle Scholar
  12. 12.
    L. Klein, Y. Shen, M.S. Killian, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2713–20.CrossRefGoogle Scholar
  13. 13.
    A.-C. Yeh, S.-C. Wang, C.-F. Cheng, Y.-J. Chang, and S.-C. Chang: Oxid. Met., 2016, vol. 86, pp. 99–112.CrossRefGoogle Scholar
  14. 14.
    T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: JOM, 2010, vol. 62, pp. 58–63.CrossRefGoogle Scholar
  15. 15.
    S. Neumeier, L.P. Freund, and M. Göken: Scr. Mater., 2015, vol. 109, pp. 104–07.CrossRefGoogle Scholar
  16. 16.
    H. Yu, S. Ukai, S. Hayashi, and N. Oono: Corros. Sci., 2017, vol. 118, pp. 49–59.CrossRefGoogle Scholar
  17. 17.
    N. Vermaak, A. Mottura, and T.M. Pollock: Corros. Sci., 2013, vol. 75, pp. 300–08.CrossRefGoogle Scholar
  18. 18.
    C.A. Stewart, R.K. Rhein, A. Suzuki, T.M. Pollock, and C.G. Levi: In: Superalloys 2016, Wiley, Hoboken, 2016, pp. 991–99CrossRefGoogle Scholar
  19. 19.
    A. Kracke: Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives, Wiley InterScience, Warrendale, PA, 2010, pp. 13–50.CrossRefGoogle Scholar
  20. 20.
    J.H. Chen, P.M. Rogers, and J.A. Little: Oxid. Met., 1997, vol. 47, pp. 381–410.CrossRefGoogle Scholar
  21. 21.
    J. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  22. 22.
    Thermo-Calc Software TCNi6 Ni-based Superalloys Database version 6. http://www.thermocalc.com/media/8165/2013-05-31-tcni6_extended_info.pdf.
  23. 23.
    K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Mater. Trans., 2008, vol. 49, pp. 1474–79.CrossRefGoogle Scholar
  24. 24.
    I. Povstugar, P.P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe: Acta Mater., 2014, vol. 78, pp. 78–85.CrossRefGoogle Scholar
  25. 25.
    C. Wagner: Corros. Sci., 1965, vol. 5, pp. 751–64.CrossRefGoogle Scholar
  26. 26.
    C.S. Giggins and F.S. Pettit: J. Electrochem. Soc., 1971, vol. 118, p. 1782.CrossRefGoogle Scholar
  27. 27.
    R. Mévrel: Mater. Sci. Eng. A, 1989, vol. 120–121, pp. 13–24.CrossRefGoogle Scholar
  28. 28.
    M. Hillert: J. Alloys Compd., 2001, vol. 320, pp. 161–76.CrossRefGoogle Scholar
  29. 29.
    CarTech® Waspaloy Alloy. http://www.cartech.com/en/product-solutions/cartech-waspaloy-alloy/. Accessed 11 October 2017.
  30. 30.
    H.-Y. Yan, V.A. Vorontsov, and D. Dye: Intermetallics, 2014, vol. 48, pp. 44–53.CrossRefGoogle Scholar
  31. 31.
    F.R. Chien and R. Brown: J. Mater. Sci., 1992, vol. 27, pp. 1514–20.CrossRefGoogle Scholar
  32. 32.
    A. Encinas-Oropesa, G.L. Drew, M.C. Hardy, A.J. Leggett, J.R. Nicholls, and N.J. Simms: Superalloys 2008, 2008, pp. 609–18.Google Scholar
  33. 33.
    M.H. Li, X.F. Sun, J.G. Li, Z.Y. Zhang, T. Jin, H.R. Guan, and Z.Q. Hu: Oxid. Met., 2003, vol. 59, pp. 591–605.CrossRefGoogle Scholar
  34. 34.
    M. Knop, V. A. Vorontsov, M.C. Hardy, and D. Dye: MATEC Web Conf., 2014, vol. 14, p. 18003.CrossRefGoogle Scholar
  35. 35.
    T.J. Nijdam, L.P.H. Jeurgens, and W.G. Sloof: Acta Mater., 2005, vol. 53, pp. 1643–53.CrossRefGoogle Scholar
  36. 36.
    L.M. Pike and S.K. Srivastava: Mater. Sci. Forum, 2008, vol. 595–598, pp. 661–71.CrossRefGoogle Scholar
  37. 37.
    C.A. Barrett: NASA Technical Memorandum 87297, National Aeronautics and Space Administration, Washington, DC, 1986.Google Scholar
  38. 38.
    A.S. Khanna: Introduction to High Temperature Oxidation and Corrosion, ASM International, Materials Park, OH, 2002.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Stéphane A. J. Forsik
    • 1
  • Alberto O. Polar Rosas
    • 1
  • Tao Wang
    • 1
  • Gian A. Colombo
    • 1
  • Ning Zhou
    • 1
  • Samuel J. Kernion
    • 1
  • Mario E. Epler
    • 1
  1. 1.R&D DepartmentCarpenter Technology CorpReadingUSA

Personalised recommendations