Skip to main content
Log in

An Electromagnetic Compounding Technique for Counteracting the Thermoelectric Magnetic Effect During Directional Solidification Under a Transverse Static Magnetic Field

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An external direct current (DC) was introduced to counteract the thermoelectric magnetic effect during the directional solidification of Sn-10 wt pct Bi alloy under a 0.5 T transverse static magnetic field. The results show that the single-side Bi segregation induced by the thermoelectric magnetic effect gradually becomes weakened, disappeared, and then reversed with the increasing current density of the external DC. Therefore, a new method for counteracting the thermoelectric magnetic effect during materials processing under the magnetic field was proposed. In order to verify this method, the absolute thermoelectric power of Sn-10 wt pct Bi alloy and the internal thermoelectric current under the experimental conditions were measured and calculated, respectively. A 2D numerical simulation was established to simulate the evolution of the solid–liquid interface morphology, flow field, and composition segregation with the increasing current density of the external DC during directional solidification under a transverse static magnetic field. The present study not only facilitates the understanding of the effects of the forced flows on the directionally solidified microstructures and composition segregation, but also provides a new way for eliminating segregation and obtaining the higher-quality solidification structure by using the electromagnetic compounding technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Hoshikawa: Jpn. J. Appl. Phys., 1982, vol. 21, pp. 545-47.

    Article  Google Scholar 

  2. K. Hoshi, N. Isawa, T. Suzuki, Y. Ohkubo: J. Electrochem Soc., 1985, vol. 132, pp. 693-700.

    Article  Google Scholar 

  3. R.M. Erb, A.R. Studart: Science, 2012, vol. 335, pp. 199-204.

    Article  Google Scholar 

  4. R. Moreau, O. Laskar, M. Tanaka, D. Camel: Mater. Sci. Eng. A, 1993, vol. 173, pp. 93-100.

    Article  Google Scholar 

  5. S.N. Tewari, R. Shah, H. Song: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1535-44.

    Article  Google Scholar 

  6. J. Wang, Z. Ren, Y. Fautrelle, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G.S.A. Jaoude, Y. Zhong, I. Kaldre, A. Bojarevics: J. Mater. Sci., 2013, vol. 48, pp. 213-19.

    Article  Google Scholar 

  7. X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi, N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367-81.

    Article  Google Scholar 

  8. W.D. Bennon, F.P. Incropera: Metall. Trans. B, 1987, vol. 18, pp. 611-16.

    Article  Google Scholar 

  9. C. Beckermann, R. Viskanta: Physicochem. Hydrodyn., 1988, vol. 10 pp. 195-213.

    Google Scholar 

  10. J. Ni, C. Beckermann: Metall. Trans. B, 1991, vol. 22, pp. 349-61.

    Article  Google Scholar 

  11. M.C. Schneider, C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2373-88.

    Article  Google Scholar 

  12. M.C. Schneider, C. Beckermann: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 3455-73.

    Article  Google Scholar 

  13. ITS-90 Thermocouples Database (National institute of standards and technology, 2008), https://srdata.nist.gov/its90/type_t/-270to0.html. Last modifed on 17 April 2008.

  14. I. KALDRE, Y. FAUTRELLE, J. ETAY, A. BOJAREVICS, L. BULIGINS: Mod. Phys. Lett. B, 2011, vol. 25, pp. 731-38.

    Article  Google Scholar 

  15. Y.F. Cao, Y. Chen, D.Z. Li, H.W. Liu, P.X. Fu: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2927-39.

    Article  Google Scholar 

  16. J. Wang, Y. Fautrelle, Z.M. Ren, H. Nguyen-Thi, A.J. Salloum, G, G. Reinhart, N. Mangelinck-Noel, X. Li, I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, pp. 121926.

    Google Scholar 

  17. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1517-31.

    Article  Google Scholar 

  18. S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, P.D. Lee: Acta Mater., 2014, vol. 79, pp. 168-80.

    Article  Google Scholar 

  19. W. Wang, P.D. Lee, M. Mclean: Acta Mater., 2003, vol. 51, pp. 2971-87.

    Article  Google Scholar 

  20. T Iida and Roderick I. L Guthrie: The physical properties of liquid metals, 1nd ed., Oxford University Press, Oxford, 1988, pp. 192.

    Google Scholar 

  21. D. Liu, B. Sang, X. Kang, D. Li: Metall. Mater. Trans. B, 2011, vol. 42, pp. 210-23.

    Article  Google Scholar 

  22. J.J. Favier, J.P. Garandet, A. Rouzaud, D. Camel: J. Crys. Growth, 1994, vol. 140, pp. 237-43.

    Article  Google Scholar 

  23. P. Lehmann, R. Moreau, D. Camel, R. Bolcato: Acta Mater., 1998, vol. 46, pp. 4067-79.

    Article  Google Scholar 

  24. J.J. Favier, P. Lehmann, J.P. Garandet, B. Drevet, F. Herbillon: Acta Mater., 1996, vol. 44, pp. 4899-4907.

    Article  Google Scholar 

  25. D. Du, Y. Fautrelle, Z. Ren, R. Moreau, X. Li: ISIJ Int., 2017, vol. 57, pp. 833-40.

    Article  Google Scholar 

  26. N. Cusack, P. Kendall: P. Phys. Soc., 2002, vol. 72, pp. 898-901.

    Article  Google Scholar 

  27. J.A. Shercliff: J. Fluid Mech., 2006, vol. 91, pp. 231-51.

    Article  Google Scholar 

  28. T. Alboussiere, A.C. Neubrand, J.P. Garandet, R. Moreau: Magnetohydrodynamics, 1995, vol. 31, pp. 228-35.

    Google Scholar 

  29. A. Kao, B. Cai, P.D. Lee, K. Pericleous: J. Cryst. Growth, 2016, vol. 457, pp. 270-74.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the financial support of the National Key Research and Development Program of China (2016YFB0301401), the National Natural Science Foundation of China (U1732276), Science and Technology Commission of Shanghai Municipality (Key Project Nos. 13JC1402500, 15520711000), and Independent Research and Development Project of State Key of Advanced Special Steel, Shanghai University (SKLASS2015-Z021, SELF-2014-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Zhong or Tianxiang Zheng.

Additional information

Manuscript submitted February 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zhou, B., Zhong, Y. et al. An Electromagnetic Compounding Technique for Counteracting the Thermoelectric Magnetic Effect During Directional Solidification Under a Transverse Static Magnetic Field. Metall Mater Trans A 49, 3373–3382 (2018). https://doi.org/10.1007/s11661-018-4732-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4732-y

Navigation