Skip to main content

Microstructural Development Due to Laser Treatment and Its Effect on Machinability of Ti6Al4V Alloy

Abstract

Application of the laser in machining has been demonstrated to improve the machinability in several metals and alloys. A very high heating and cooling rate during laser treatment tends to modify the microstructure significantly. In some materials, the change in the microstructural features affects the machinability of the materials. In this work, microstructure evolution due to laser treatment and its effect on the machinability of Ti6Al4V was studied using advanced characterization techniques. The microstructure of the surface and subsurface of the cylindrical Ti6Al4V rod was modified using a high-power laser source with varying laser scanning speeds. The laser treatment resulted in three distinctly different microstructures along the radial direction of the rod; these were classified as the lath dominant zone, a mixture of laths with equiaxed grains and equiaxed grains surrounded by bands. Rapid heating and cooling during laser scanning lead to the formation of the martensite phase and local strain development. Further, at the boundaries of laths, compressive twins (57 deg\( \left\langle {\bar{1}2\bar{1}0} \right\rangle \)) were formed because of laser heating. These twins are different from tensile twins (94.8 deg\( \left\langle {\bar{1}2\bar{1}0} \right\rangle \)), which are formed at the machined subsurface during deformation. The formation of a martensite phase and local strain development due to laser treatment resist the formation of localized shear bands along the thickness of machined chips during machining. This in turn also repels the crack propagation along the shear band developed during machining and enhances the machinability of the material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Notes

  1. 1.

    β phase was directly indexed by EBSD with more than 0.1 CI; it may be possible that all the fine β phase was not captured during the EBSD scan.

References

  1. 1.

    1 M. Ahmadi, Y. Karpat, O. Acar, and Y.E. Kalay: J. Mater. Process. Technol., 2018, vol. 252, pp. 333–47.

    Article  Google Scholar 

  2. 2.

    2 P.J. Arrazola, A. Garay, L.M. Iriarte, M. Armendia, S. Marya, and F. Le Maître: J. Mater. Process. Technol., 2009, vol. 209, pp. 2223–30.

    Article  Google Scholar 

  3. 3.

    I.S. Jawahir, E. Brinksmeier, R. M’Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, and A. D. Jayal: CIRP Ann. Manuf. Technol., 2011, vol. 60, pp. 603–26.

    Article  Google Scholar 

  4. 4.

    4 M. Armendia, P. Osborne, A. Garay, J. Belloso, S. Turner, and P.J. Arrazola: Mater. Manuf. Process, 2012, vol. 27, pp. 457–61.

    Article  Google Scholar 

  5. 5.

    S. Joshi, P. Pawar, A. Tewari, and S.S. Joshi: CIRP Ann. Manuf. Technol., 2014, vol. 7, pp. 191–201.

    Article  Google Scholar 

  6. 6.

    6 P.J. Arrazola, T. Özel, D. Umbrello, M. Davies, and I.S. Jawahir: CIRP Ann. Manuf. Technol., 2013, vol. 62, pp. 695–718.

    Article  Google Scholar 

  7. 7.

    7 B. Vrancken, L. Thijs, J.P. Kruth, and J. Van Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177–85.

    Article  Google Scholar 

  8. 8.

    8 W. Sha and S. Malinov: Titanium Alloys: Modelling of Microstructure, Properties and Applications, Woodhead Publishing Limited, 2009.

    Book  Google Scholar 

  9. 9.

    9 S.A. Abbasi, P. Feng, Y. Ma, J. Zhang, D. Yu, and Z. Wu: Int. J. Adv. Manuf. Technol., 2016, vol. 86, pp. 1393–1405.

    Article  Google Scholar 

  10. 10.

    10 Y. Ma, D. Yu, P. Feng, Z. Wu, and J. Zhang: Adv. Mech. Eng., 2015, vol. 7, pp. 1–10.

    Google Scholar 

  11. 11.

    11 C.R. Dandekar, Y.C. Shin, and J. Barnes: Int. J. Mach. Tool. Manuf., 2010, vol. 50, pp. 174–82.

    Article  Google Scholar 

  12. 12.

    12 S. Joshi, A. Tewari, and S. Joshi: J. Manuf. Sci. Eng., 2014, vol. 135, pp. 1–11.

    Google Scholar 

  13. 13.

    13 S. Sun, M. Brandt, and M.S. Dargusch: Int. J. Mach. Tool. Manuf., 2010, vol. 50, pp. 663–80.

    Article  Google Scholar 

  14. 14.

    14 V. Upadhyay, P.K. Jain, and N.K. Mehta: Adv. Mater. Res., 2012, vol. 622–623, pp. 361–65.

    Article  Google Scholar 

  15. 15.

    15 Y. Ayed, G. Germain, W. Ben Salem, and H. Hamdi: Finite Elem. Anal. Des., 2014, vol. 92, pp. 72–79.

    Article  Google Scholar 

  16. 16.

    16 M.J. Bermingham, W.M. Sim, D. Kent, S. Gardiner, and M.S. Dargusch: Wear, 2015, vol. 322–323, pp. 151–63.

    Article  Google Scholar 

  17. 17.

    17 F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53, pp. 555–67.

    Article  Google Scholar 

  18. 18.

    18 S. Sun, M. Brandt, and M.S. Dargusch: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1573–81.

    Article  Google Scholar 

  19. 19.

    R. A. R. Rashid, S. Sun, G. Wang, and M.S. Dargusch: Int. J. Mach. Tool. Manuf., 2012, vol. 63, pp. 58–69.

    Article  Google Scholar 

  20. 20.

    20 J. Yang, S. Sun, M. Brandt, and W. Yan: J. Mater. Process. Technol., 2010, vol. 210, pp. 2215–22.

    Article  Google Scholar 

  21. 21.

    21 Y. Jeon and C.M. Lee: Int. J. Precis. Eng. Man., 2012, vol. 13, pp. 311–17.

    Article  Google Scholar 

  22. 22.

    22 S.I. Wright, M.M. Nowell, S.P. Lindeman, P.P. Camus, M. De Graef, and M.A. Jackson: Ultramicroscopy, 2015, vol. 159, pp. 81–94.

    Article  Google Scholar 

  23. 23.

    23 S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R. Shi, and Y. Wang: Acta Mater., 2016, vol. 106, pp. 374–87.

    Article  Google Scholar 

  24. 24.

    24 A.M. Kamat, S.M. Copley, and J.A. Todd: Surf. Coat. Technol., 2017, vol. 313, pp. 82–95.

    Article  Google Scholar 

  25. 25.

    25 C. Liu, L. Yu, A. Zhang, X. Tian, D. Liu, and S. Ma: Mater. Sci. Eng. A, 2016, vol. 673, pp. 185–92.

    Article  Google Scholar 

  26. 26.

    26 Z. Li, J. Li, J. Liu, D. Liu, and H. Wang: J. Alloys Compd., 2016, vol. 657, pp. 278–85.

    Article  Google Scholar 

  27. 27.

    27 H. Li, Z. Ji, and H. Yang: Mater. Charact., 2013, vol. 76, pp. 6–20.

    Article  Google Scholar 

  28. 28.

    28 S.I. Wright, M.M. Nowell, R. De Kloe, P. Camus, and T. Rampton: Ultramicroscopy, 2015, vol. 148, pp. 132–45.

    Article  Google Scholar 

  29. 29.

    29 W. Pfleging, R. Kumari, H. Besser, T. Scharnweber, and J. Dutta: Appl. Surf. Sci., 2015, vol. 355, pp. 104–11.

    Article  Google Scholar 

  30. 30.

    30 J. Xu, W. Zeng, Y. Zhao, X. Sun, and Z. Du: J. Alloys Compd., 2016, vol. 688, pp. 301–09.

    Article  Google Scholar 

  31. 31.

    31 A. Bhattacharjee, V.K. Varma, S. V Kamat, A.K. Gogia, and S. Bhargava: Metall. Mater. Trans. A, 2006, vol. 37A, p. 1423 – 33.

    Article  Google Scholar 

  32. 32.

    32 Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi: Mater. Sci. Eng. A, 2001, vol. 312, pp. 182–88.

    Article  Google Scholar 

  33. 33.

    33 M. Niewczas: Acta Mater., 2010, vol. 58, pp. 5848–57.

    Article  Google Scholar 

  34. 34.

    34 L. Yang, S. Li, X. Chang, H. Zhong, and H. Fu: Acta Mater., 2015, vol. 97, pp. 269–81.

    Article  Google Scholar 

  35. 35.

    35 J. Lind, S.F. Li, R. Pokharel, U. Lienert, A.D. Rollett, and R.M. Suter: Acta Mater., 2014, vol. 76, pp. 213–20.

    Article  Google Scholar 

  36. 36.

    36 S. Sun, M. Brandt, and M.S. Dargusch: Int. J. Mach. Tool. Manuf., 2009, vol. 49, pp. 561–68.

    Article  Google Scholar 

  37. 37.

    37 B. Wang and Z. Liu: Mater. Des., 2016, vol. 98, pp. 68–78.

    Article  Google Scholar 

  38. 38.

    38 J. Peirs, W. Tirry, B. Amin-Ahmadi, F. Coghe, P. Verleysen, L. Rabet, D. Schryvers, and J. Degrieck: Mater. Charact., 2013, vol. 75, pp. 79–92.

    Article  Google Scholar 

  39. 39.

    39 S. Zhang, J. Zhou, L. Wang, H. Liu, and S. Dong: Mater. Sci. Eng. A, 2015, vol. 632, pp. 78–81.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Machine Tool Lab (Mechanical Engineering Department), the National Facility of Texture and [OIM–a DST-IPHRA] (Metallurgical Engineering and Materials Science Department) and Sophisticated Analytical Instrument Facility (SAIF) at IIT Bombay for providing experimental facilities. The authors also acknowledge the Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India, for providing the experimental facilities for laser treatment. Further, the authors acknowledge the National Center for Aerospace Innovation (NCAIR) and Research for providing the funding for this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Mishra.

Additional information

Manscript submitted January 3, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Telrandhe, S.V., Jayabalan, B., Paul, C.P. et al. Microstructural Development Due to Laser Treatment and Its Effect on Machinability of Ti6Al4V Alloy. Metall Mater Trans A 49, 3450–3467 (2018). https://doi.org/10.1007/s11661-018-4728-7

Download citation