Effect of Modifying the Chemical Composition on the Properties of Spring Steel


The aim of the present work was to experimentally examine the effect of modifying the chemical composition on the properties of Si-Cr-V spring steel. The investigation was based on a commercial 51CrV4 spring steel, with its composition modified in terms of Si, Cr, and V contents, targeting a yield strength of over 2000 MPa in the tempered condition. The experimental evaluation included decarburization and scale resistance, tensile properties, fracture toughness, and fatigue resistance. The results show that the simulation software gave greatly exaggerated values when it comes to the yield-strength prediction and the influence of the steel’s composition. In terms of experimental results, the most influential element in terms of improving the decarburization resistance, the yield and tensile strengths, the fracture toughness, and most importantly the fatigue limit and the fatigue life is Si, followed by Cr, while increasing the amount of V has a mainly negative effect. However, when the Si content exceeds 1.6 pct, this leads to an increased decarburization depth and a drop in the tensile properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    P. Mårtensson, D. Zenkert and M. Åkermo: Composite Structures, 2015, vol. 134, pp. 572-578.

    Article  Google Scholar 

  2. 2.

    Do-Hyoung Kima, Hyun-Gyung Kimb and Hak-Sung Kim: Composite Structures, 2015, vol. 131, pp. 742-752.

    Article  Google Scholar 

  3. 3.

    R.K. Rathore, E.N. Karlus and R.L. Himte: International Journal of Engineering Research & Technology, 2014, vol. 3, pp. 1391-1396.

    Google Scholar 

  4. 4.

    F. Perrard, F. Charvieux, and J. Languillaume: A new spring steel with improved ductility dedicated for high strength parabolic leaf springs. Proc. 2nd Int. Conf. Super-High Strength Steels, Peschiera del Garda, Italy, 2010.

  5. 5.

    S. Choi: Optimization of Microstructure and Properties of High Strength Spring Steel, Ph.D. Thesis, Posco, Korea, 2011.

  6. 6.

    A. Ardehali Barani, D. Ponge and D. Raabe: Materials Science and Engineering A, 2006, vol. 426, pp. 194-201.

    Article  Google Scholar 

  7. 7.

    Zhang Chao-lei, Liu Ya-zheng, Jiang Chao and Xiao Jun-fu: Journal of Iron and Steel Research, International, 2011, vol. 18, pp. 49-53.

    Article  Google Scholar 

  8. 8.

    B. Podgornik, V. Leskovšek, M. Godec and B. Senčič: Materials Science and Engineering A, 2014, vol. 599, pp. 81-86.

    Article  Google Scholar 

  9. 9.

    W.J. Nam, C.S. Lee and D.Y. Ban: Materials Science and Engineering A, 2000, vol. 289, pp. 8-17.

    Article  Google Scholar 

  10. 10.

    C.S. Lee, K.A. Lee, D.M. Li, S.J. Yoo and W.J. Nam: Materials Science and Engineering A, 1998, vol. 241, pp. 30-37.

    Article  Google Scholar 

  11. 11.

    A. Ardehali Barani, F. Li, P. Romano, D. Ponge and D. Raabe: Materials Science and Engineering A, 2007, vol. 463, pp. 138-146.

    Article  Google Scholar 

  12. 12.

    J.H. Ai, T.C. Zhao, H.J. Gao, Y.H. Hu and X.S. Xie: Journal of Materials Processing Technology, 2005, vol. 160, pp. 390-395.

    Article  Google Scholar 

  13. 13.

    P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari and G. Raghavendra: Optics and Lasers in Engineering, 2012, vol. 50, pp. 678-686.

    Article  Google Scholar 

  14. 14.

    B. Podgornik, M.Torkar, J.Burja, M.Godec and B.Senčič: Materials Science and Engineering A, 2015, vol. 638, pp. 183-189.

    Article  Google Scholar 

  15. 15.

    Jun Chen, Meng-yang Lv, Zhen-yu Liu, Guo-dong Wang: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 2300-2312.

    Article  Google Scholar 

  16. 16.

    Yi-hong Nie, Wei-jun Hui, Wan-tang Fu and Yu-qing Weng: Journal of Iron and Steel Research International, 2007, vol. 14, pp. 53-59.

    Article  Google Scholar 

  17. 17.

    M. Assefpour-Dezfuly and A. Brownrigg: Metallurgical and Materials Transactions A, 1989, vol. 20, pp. 1951-1959.

    Article  Google Scholar 

  18. 18.

    B. Podgornik, B. Žužek and V. Leskovšek: Materials Performance and Characterization, 2014, vol. 3, pp. 1-17.

    Google Scholar 

  19. 19.

    S. Wei, Z. Tingshi, G. Daxing, L. Dunkang, L. Poliang and Q. Xiaoyun: Engineering Fracture Mechanics, 1982, vol. 16, pp. 69-82.

    Article  Google Scholar 

  20. 20.

    N. Saito, K. Abiko, H. Kimura: Materials Transaction, JIM, 1995, vol. 36, pp. 601-609.

    Article  Google Scholar 

  21. 21.

    Yang-bo Liu, Wei Zhang, Qian Tong, Qi-song Sun: Journal of Iron and Steel Research, International, 2016, vol. 23, pp. 1316-1322.

    Article  Google Scholar 

  22. 22.

    C. Mardon: The Austenitisation and Decarburisation of High Silicon Spring Steels, Ph.D. Thesis, University of Canterbury, Christchurch, 1998.

  23. 23.

    C.W. Tuck: Corrosion Science, 1965, Vol. 5, pp. 631-634.

    Article  Google Scholar 

  24. 24.

    R. Pradhan: Continuous Annealing of Steel, in: ASM Handbook, vol. 4, Heat treating, 10th ed., ASM International, 1998, pp. 122–46.

  25. 25.

    W.-J. Nam, H.-C. Choi: Journal Materials Science and Technology, 1997, Vol. 13, pp. 568-574.

    Article  Google Scholar 

  26. 26.

    W.S. Owen: Trans. ASM, 1954, Vol. 46, pp. 812-829.

    Google Scholar 

  27. 27.

    Hardenable Alloy Steels (Total Materia, Nov. 2002) http://www.totalmateria.com/page.aspx?ID=CheckArticle&site=kts&LN=EN&NM=91. Accessed 25 March 2018.

  28. 28.

    T.N. Baker: Ironmaking & Steelmaking, 2016, Vol. 43, pp. 264-307.

    Article  Google Scholar 

  29. 29.

    S.T. Furr: Journal of Basic Engineering, ASME, 1972, Vol. 94, pp. 223-227.

    Article  Google Scholar 

  30. 30.

    J.W. Morris Jr., Z. Guo, C.R. Krenn, Y.-H. Kim: ISIJ International, 2001, Vol. 41, pp. 599–611.

    Article  Google Scholar 

  31. 31.

    M.E. Natishan: Mechanisms of strength and toughness in a microalloyed precipitation hardened steels, David Taylor Research Center, Bethesda, Maryland, 1989.

    Google Scholar 

  32. 32.

    E. Gariboldi, W. Nicodemi, G. Silva, M. Vedani: Metallurgical Science and Technology, 1994, Vol. 11, pp. 11-21.

    Google Scholar 

  33. 33.

    M. Ayada, M. Yuga, N. Tsuji, Y. Saito, A. Yoneguti: ISIJ International, 1998, Vol. 38, pp. 1022-1031.

    Article  Google Scholar 

Download references


The authors acknowledge the financial support of the Slovenian Research Agency (Research Core Funding No. P2-0050) and the company Štore Steel d.o.o.

Author information



Corresponding author

Correspondence to B. Podgornik.

Additional information

Manuscript submitted November 29, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Podgornik, B., Tehovnik, F., Burja, J. et al. Effect of Modifying the Chemical Composition on the Properties of Spring Steel. Metall Mater Trans A 49, 3283–3292 (2018). https://doi.org/10.1007/s11661-018-4713-1

Download citation