Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4343–4352 | Cite as

Effect of Rhenium Addition on Hot Corrosion Resistance of Ni-Based Single Crystal Superalloys

  • J. X. Chang
  • D. Wang
  • X. G. Liu
  • L. H. Lou
  • J. Zhang
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


Hot corrosion behavior of two Ni-based single crystal superalloys containing 0 Re and 2 wt pct Re in molten sodium sulfate (Na2SO4) at 900 °C in static air has been investigated using the “deposit recoat” method. It was shown that the incubation period of the Re-containing alloy was much longer than that of the Re-free alloy. It was because Re increased the stability of the chromium oxide (Cr2O3) scale, promoted the formation of nickel titanate (NiTiO3), and suppressed the diffusion of Ni. In addition, the overall corrosion kinetics of the Re-containing alloy followed a multistage parabolic law, compared with the Re-free alloy. This could be because Re increased the activity of chromium (Cr) and titanium (Ti), which resulted in the periodically opening and closure of the cracks in the outer oxide layer.



This work was supported by the National Natural Science Foundation of China under Grant No. 51631008, the National Key Research and Development Program of China under Grant No. 2016YFB0701403, the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. S201710705025 and the Xi’an Shiyou University “Materials Science and Engineering” Provincial Preponderant Discipline. The authors are grateful for these supports.


  1. 1.
    R.A. Rapp: Corros. Sci., 2002, vol. 44, pp. 209–221.CrossRefGoogle Scholar
  2. 2.
    Y. Murata, R. Hashizurne, A. Yoshinari, N. Aoki and M.M. Fukni: Superalloys 2000, 2000, pp. 285-294.Google Scholar
  3. 3.
    S.Q. Zhao, X.S. Xie and G.D. Smith: Surf. Coat. Technol., 2004, vol. 185, pp. 178-183.CrossRefGoogle Scholar
  4. 4.
    N. Otsuka and R.A. Rapp: J. Electrochem. Soc., 1990, vol. 137, pp. 53-60.CrossRefGoogle Scholar
  5. 5.
    R. Burgel, J. Grossmann, O. Lusebrink, H. Mughrabi, F. Pyczak, R.F. Singer and A. Volek: Superalloys 2000, 2000, pp. 25-34.Google Scholar
  6. 6.
    R. C.Reed: The Superalloys Fundamentals and Applications, Cambridge University House, New York, 2006, pp. 157-162.CrossRefGoogle Scholar
  7. 7.
    F.S. Pettit and G.H. Meier: Superalloys 1984, 1984, pp. 651-687.Google Scholar
  8. 8.
    K.R. Peters, D.P. Whittle and J. Stringer: Corros. Sci., 1976, vol. 16, pp. 791-804.CrossRefGoogle Scholar
  9. 9.
    J.X. Chang, D. Wang, T. Liu, G. Zhang, L.H. Lou and J. Zhang: Corros. Sci., 2015, vol. 98, pp. 585-591.CrossRefGoogle Scholar
  10. 10.
    J.X. Chang, D. Wang, G. Zhang, L.H. Lou and J. Zhang: Corros. Sci., 2017, vol. 117, pp. 35-42.CrossRefGoogle Scholar
  11. 11.
    K. Matsugi, M. Kawakami, Y. Murata, M. Morinaga, N. Yukawa and T. Takayanagi: Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 1992, vol. 78, pp. 821-28.Google Scholar
  12. 12.
    K. Matsugi, Y. Murata, M. Morinaga and N. Yukawa: Superalloys 1992, 1992, pp. 307-316.Google Scholar
  13. 13.
    M. Moniruzzaman, Y. Murata, M. Morinaga, R. Hashizume, A. Yoshinari and Y. Fukui: ISIJ Int., 2003, vol. 43, pp. 1244-1252.CrossRefGoogle Scholar
  14. 14.
    N. Czech, F. Schmitz and W. Stamm: Surf. Coat. Technol., 1994, vol. 68, pp. 17-21.CrossRefGoogle Scholar
  15. 15.
    P. Caron and T. Khan: Aerosp. Sci. Technol., 1999, vol. 3, pp. 513-523.CrossRefGoogle Scholar
  16. 16.
    R.C. Reed, A. Sato, F. Karlsson and M. Hasselqvist: Superalloy 2012, 2012, pp. 197-204.CrossRefGoogle Scholar
  17. 17.
    R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata and M. Morinaga: Superalloys 2004, 2004, pp. 53-62.Google Scholar
  18. 18.
    G.C. Fryburg, F.J. Kohl, C.A. Stearns and W.L. Fielder: J. Electrochem. Soc., 1982, vol. 129, pp. 571-585.CrossRefGoogle Scholar
  19. 19.
    E. Liuy, Z. Zheng, X. Guan, J. Tong, L. Ning and Y. Yu: J. Mater. Sci. Technol., 2010, vol. 26, pp. 895-899.CrossRefGoogle Scholar
  20. 20.
    G. Injeti, W. Alasdair, D. Hailiang, J. Burnell-gray and S. Datta: ECS Trans., 2008, vol. 6, pp. 105-115.CrossRefGoogle Scholar
  21. 21.
    J.X. Chang, D. Wang, G. Zhang, L.H. Lou and J. Zhang: Superalloys 2016, 2016, pp. 177-185.Google Scholar
  22. 22.
    G.C. Fryburg, C.A. Stearns and F.J. Kohl: J. Electrochem. Soc., 1977, vol. 124, pp. 1147-1148.CrossRefGoogle Scholar
  23. 23.
    J.A. Goebel and F.S. Pettit: Metall. Trans., 1970, vol. 1, pp. 1943-1954.CrossRefGoogle Scholar
  24. 24.
    C.S. Giggins and F.S. Pettit: J. Electrochem. Soc., 1971, vol. 118, pp. 1782-1790.CrossRefGoogle Scholar
  25. 25.
    D.K. Gupta and R.A. Rapp: J. Electrochem. Soc., 1980, vol. 127, pp. 2194-2202.CrossRefGoogle Scholar
  26. 26.
    N. Birks, G.H. Meier and F.S. Pettit: Introduce to the high-temperature oxidation of metals, 2nd ed., Cambridge University Press, New York, 2006, pp. 115-119.CrossRefGoogle Scholar
  27. 27.
    J. Litz, A. Rahmel, M. Schorr and J. Weiss: Oxid. Met., 1989, vol. 32, pp. 167-184.CrossRefGoogle Scholar
  28. 28.
    P. Kofstad and K.P. Lillerud: J. Electrochem. Soc., 1980, vol. 127, pp. 2410-2419.CrossRefGoogle Scholar
  29. 29.
    K.P. Lillerud and P. Kofstad: J. Electrochem. Soc., 1980, vol. 127, pp. 2397-2410.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • J. X. Chang
    • 1
  • D. Wang
    • 2
  • X. G. Liu
    • 2
  • L. H. Lou
    • 2
  • J. Zhang
    • 2
    • 3
  1. 1.College of Materials Science and Engineering, Xiʼan Shiyou UniversityXiʼanChina
  2. 2.Superalloys DivisionInstitute of Metal Research, Chinese Academy of SciencesShenyangChina
  3. 3.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangChina

Personalised recommendations