Skip to main content
Log in

Thin-Wall Debit in Creep of DS200 + Hf Alloy

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The thin-wall debit in creep life of the directionally solidified DS200 + Hf alloy at 900 °C has been investigated. A range of different applied loads and various directions with respect to the solidification direction was investigated. A direct comparison of creep properties in air between thin and massive specimens of DS200 + Hf was studied in detail. Creep results have shown that a substantial thin-wall debit in creep life and creep ductility is obtained along transverse directions compared with the longitudinal direction. The above creep performance was compared with the thin-wall loss in creep of the 〈001〉 single-crystal DS200 + Hf, for which almost no thickness debit in creep life was observed. The thin-wall debit in creep was mainly ascribed to the preferential oxidation of the grain boundaries. Besides, oxidized carbides were found to be cracked, and recrystallization was found in their vicinity. Finally, based on the produced experimental outcome, a coupled creep-oxidation modeling approach has been proposed to account for the thin-wall debit in creep life. This model takes into account creep anisotropy through the normalization by the ultimate tensile stress in both the Norton and Kachanov laws used in this modeling framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.J. Donachie, and S.J. Donachie: Superalloys: A Technical Guide, ASM International, 2002.

  2. M. Gell, D.N. Duhl, and A.F. Giamei: Superalloys 1980, Seven Springs, Champion, PA, 1980, TMS, pp. 205–14.

  3. R.C. Reed: The Superalloys - Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2006.

    Google Scholar 

  4. J.J. Jackson, M.J. Donachie, R.J. Henricks, and M. Gell: Metallurgical Transactions, 1977, vol. 8A, pp. 1615-1620.

    Article  Google Scholar 

  5. F.L. Versnyder, and M.E. Shank: Materials Science and Engineering, 1970, vol. 6, pp. 213-247.

    Article  Google Scholar 

  6. D.N. Duhl, and C.P. Sullivan: Journal of Metals, 1971, vol. 23, pp. 38-40.

    Google Scholar 

  7. M. Bensch, E. Fleischmann, C.H. Konrad, M. Fried, C.M.F. Rae, and U. Glatzel: Superalloys 2012, Seven Springs, Champion, PA, 2012, TMS, pp. 387-94.

  8. M. Bensch, C.H. Konrad, E. Fleischmann, C.M.F. Rae, and U. Glatzel: Materials Science and Engineering: A, 2013, vol. 577, pp. 179-188.

    Article  Google Scholar 

  9. M. Bensch, J. Preußner, R. Hüttner, G. Obigodi, S. Virtanen, J. Gabel, and U. Glatzel: Acta Materialia, 2010, vol. 58, pp. 1607-1617.

    Article  Google Scholar 

  10. M. Brunner, M. Bensch, R. Völkl, E. Affeldt, and U. Glatzel: Materials Science and Engineering: A, 2012, vol. 550, pp. 254-262.

    Article  Google Scholar 

  11. S. Dryepondt, D. Monceau, F. Crabos, and E. Andrieu: Acta Materialia, 2005, vol. 53, pp. 4199-4209.

    Article  Google Scholar 

  12. V. Seetharaman, and A.D. Cetel: Superalloys 2004, Seven Springs, Champion, PA, 2004, TMS, pp. 207–14.

  13. A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky, and R. Banerjee: Acta Materialia, 2012, vol. 60, pp. 5697-5711.

    Article  Google Scholar 

  14. A. Srivastava, and A. Needleman: Acta Materialia, 2013, vol. 61, pp. 6506-6516.

    Article  Google Scholar 

  15. Y. Hu, L. Zhang, C. Cheng, P. Zhao, T. Cao, G. Guo, and J. Zhao: Vacuum, 2018, vol. 150, pp. 105-115.

    Article  Google Scholar 

  16. M. Bensch, A. Sato, N. Warnken, E. Affeldt, R.C. Reed, and U. Glatzel: Acta Materialia, 2012, vol. 60, pp. 5468-5480.

    Article  Google Scholar 

  17. D. Shi, C. Dong, and X. Yang: Materials & Design, 2013, vol. 45, pp. 663-673.

    Article  Google Scholar 

  18. J.C. Stinville, K. Gallup, and T.M. Pollock: Metallurgical and Materials Transactions A, 2015, vol. 46A, pp. 2516-2529.

    Article  Google Scholar 

  19. J. Huang, D. Shi, and X. Yang: Science China Technological Sciences, 2014, vol. 57, pp. 1802-1815.

    Article  Google Scholar 

  20. P. Caron, P. J. Henderson, T. Khan, and M. Mclean: Scripta Metallurgica, 1986, vol. 20, pp. 875-880.

    Article  Google Scholar 

  21. P. Caron, and T. Khan: Materials Science and Engineering, 1983, vol. 61, pp. 173-194.

    Article  Google Scholar 

  22. P. Caron, Y. Ohta, Y.G. Nakagawa, and T. Khan: Superalloys 1988, Seven Springs, Champion, PA, 1988, TMS, pp. 215–24.

  23. L. Mataveli Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, and L. Marcin: Materials at High Temperatures, 2016, vol. 33 (4-5), pp. 361-371.

    Article  Google Scholar 

  24. J. Cormier, X. Milhet, F. Vogel, and J. Mendez: Superalloys 2008, Seven Springs, Champion, PA, 2008, TMS, pp. 941–49.

  25. J. Cormier, X. Milhet, and J. Mendez: Acta Materialia, 2007, vol. 55, pp. 6250-6259.

    Article  Google Scholar 

  26. F. Riallant, J. Cormier, A. Longuet, X. Milhet, and J. Mendez: Metallurgical and Materials Transactions A, 2014, vol. 45A, pp. 351-360.

    Article  Google Scholar 

  27. L. Mataveli Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, F. Mauget, G. Cailletaud, and L. Marcin: Superalloys 2016, Seven Springs, Champion, PA, 2016, TMS, pp. 747–56.

  28. P. Kontis, D.M. Collins, S. Johansson, A.J. Wilkinson, J.J. Moverare, and R.C. Reed: Superalloys 2016, Seven Springs, Champion, PA, 2016, TMS, pp. 763-772.

  29. P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, and B. Gault: Scripta Materialia, 2018, vol. 147, pp. 59-63.

    Article  Google Scholar 

  30. P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, and B. Gault: Scripta Materialia, 2018, vol. 148, pp. 76-80.

    Article  Google Scholar 

  31. Z. Shi, J. Li, and S. Liu: Progress in Natural Science: Materials International, 2012, vol. 22, pp. 426-432.

    Article  Google Scholar 

  32. S Steuer, Z Hervier, S Thabart, C Castaing, Tm Pollock, and J Cormier: Materials Science and Engineering: A, 2014, vol. 601, pp. 145-152.

    Article  Google Scholar 

  33. E. Aghion, M. Bamberger, and A. Berkovits: Journal of Materials Science, 1991, vol. 26, pp. 1873-1881.

    Article  Google Scholar 

  34. L. Mataveli Suave: PhD Thesis, ISAE-ENSMA, 2017.

  35. L.M. Kachanov: Foundations of the Theory of Plasticity, 1971.

  36. F.H. Norton: The Creep of Steel at High Temperatures, McGraw-Hill Book Company, Incorporated, 1929.

    Google Scholar 

  37. Y.N. Rabotnov: in Creep Rupture, Springer, 1969, pp. 342–49.

  38. B. Wilshire, and P.J. Scharning: International Materials Reviews, 2008, vol. 53, pp. 91-104.

    Article  Google Scholar 

  39. B. Wilshire, P.J. Scharning, and R. Hurst: Energy Materials, 2007, vol. 2, pp. 84-88.

    Article  Google Scholar 

  40. A. Baldan: Journal of Materials Science, 1995, vol. 30, pp. 6288-6298.

    Article  Google Scholar 

  41. N. Matan, D.C. Cox, C.M.F. Rae, and R.C. Reed: Acta Materialia, 1999, vol. 47, pp. 2031-2045.

    Article  Google Scholar 

  42. R. Desmorat, A. Mattiello, and J. Cormier: International Journal of Plasticity, 2017, vol. 95, pp. 43-81.

    Article  Google Scholar 

  43. J.-B. le Graverend, J. Cormier, F. Gallerneau, P. Villechaise, S. Kruch, and J. Mendez: International Journal of Plasticity, 2014, vol. 59, pp. 55-83.

    Article  Google Scholar 

Download references

Acknowledgments

SAFRAN is gratefully acknowledged for the financial support of L. Mataveli Suave’s PhD grant and for providing the material. Prof. Georges Cailletaud (Mines ParisTech) is acknowledged for fruitful discussion regarding the modeling approach developed in this work. Dr. Elodie Drouelle, Caroline Biffi, Alice Dolmaire and Javier Zamarripa Solano are gratefully acknowledged for their technical assistance with the TGA and creep experiments. Dr. Baptiste Gault and Prof. Dierk Raabe (Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany) are gratefully acknowledged for their assistance with the oxidized carbide observations. The anonymous Key Reader of this manuscript is acknowledged for all his/her suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorena Mataveli Suave or Jonathan Cormier.

Additional information

Manuscript submitted March 16, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mataveli Suave, L., Muñoz, A.S., Gaubert, A. et al. Thin-Wall Debit in Creep of DS200 + Hf Alloy. Metall Mater Trans A 49, 4012–4028 (2018). https://doi.org/10.1007/s11661-018-4708-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4708-y

Navigation