Advertisement

Thin-Wall Debit in Creep of DS200 + Hf Alloy

  • Lorena Mataveli Suave
  • Aïda Serrano Muñoz
  • Anaïs Gaubert
  • Guillaume Benoit
  • Lionel Marcin
  • Paraskevas Kontis
  • Patrick Villechaise
  • Jonathan Cormier
Topical Collection: Superalloys and Their Applications
  • 33 Downloads
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications

Abstract

The thin-wall debit in creep life of the directionally solidified DS200 + Hf alloy at 900 °C has been investigated. A range of different applied loads and various directions with respect to the solidification direction was investigated. A direct comparison of creep properties in air between thin and massive specimens of DS200 + Hf was studied in detail. Creep results have shown that a substantial thin-wall debit in creep life and creep ductility is obtained along transverse directions compared with the longitudinal direction. The above creep performance was compared with the thin-wall loss in creep of the 〈001〉 single-crystal DS200 + Hf, for which almost no thickness debit in creep life was observed. The thin-wall debit in creep was mainly ascribed to the preferential oxidation of the grain boundaries. Besides, oxidized carbides were found to be cracked, and recrystallization was found in their vicinity. Finally, based on the produced experimental outcome, a coupled creep-oxidation modeling approach has been proposed to account for the thin-wall debit in creep life. This model takes into account creep anisotropy through the normalization by the ultimate tensile stress in both the Norton and Kachanov laws used in this modeling framework.

Notes

Acknowledgments

SAFRAN is gratefully acknowledged for the financial support of L. Mataveli Suave’s PhD grant and for providing the material. Prof. Georges Cailletaud (Mines ParisTech) is acknowledged for fruitful discussion regarding the modeling approach developed in this work. Dr. Elodie Drouelle, Caroline Biffi, Alice Dolmaire and Javier Zamarripa Solano are gratefully acknowledged for their technical assistance with the TGA and creep experiments. Dr. Baptiste Gault and Prof. Dierk Raabe (Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany) are gratefully acknowledged for their assistance with the oxidized carbide observations. The anonymous Key Reader of this manuscript is acknowledged for all his/her suggestions.

References

  1. 1.
    M.J. Donachie, and S.J. Donachie: Superalloys: A Technical Guide, ASM International, 2002.Google Scholar
  2. 2.
    M. Gell, D.N. Duhl, and A.F. Giamei: Superalloys 1980, Seven Springs, Champion, PA, 1980, TMS, pp. 205–14.Google Scholar
  3. 3.
    R.C. Reed: The Superalloys - Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2006.Google Scholar
  4. 4.
    J.J. Jackson, M.J. Donachie, R.J. Henricks, and M. Gell: Metallurgical Transactions, 1977, vol. 8A, pp. 1615-1620.CrossRefGoogle Scholar
  5. 5.
    F.L. Versnyder, and M.E. Shank: Materials Science and Engineering, 1970, vol. 6, pp. 213-247.CrossRefGoogle Scholar
  6. 6.
    D.N. Duhl, and C.P. Sullivan: Journal of Metals, 1971, vol. 23, pp. 38-40.Google Scholar
  7. 7.
    M. Bensch, E. Fleischmann, C.H. Konrad, M. Fried, C.M.F. Rae, and U. Glatzel: Superalloys 2012, Seven Springs, Champion, PA, 2012, TMS, pp. 387-94.Google Scholar
  8. 8.
    M. Bensch, C.H. Konrad, E. Fleischmann, C.M.F. Rae, and U. Glatzel: Materials Science and Engineering: A, 2013, vol. 577, pp. 179-188.CrossRefGoogle Scholar
  9. 9.
    M. Bensch, J. Preußner, R. Hüttner, G. Obigodi, S. Virtanen, J. Gabel, and U. Glatzel: Acta Materialia, 2010, vol. 58, pp. 1607-1617.CrossRefGoogle Scholar
  10. 10.
    M. Brunner, M. Bensch, R. Völkl, E. Affeldt, and U. Glatzel: Materials Science and Engineering: A, 2012, vol. 550, pp. 254-262.CrossRefGoogle Scholar
  11. 11.
    S. Dryepondt, D. Monceau, F. Crabos, and E. Andrieu: Acta Materialia, 2005, vol. 53, pp. 4199-4209.CrossRefGoogle Scholar
  12. 12.
    V. Seetharaman, and A.D. Cetel: Superalloys 2004, Seven Springs, Champion, PA, 2004, TMS, pp. 207–14.Google Scholar
  13. 13.
    A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky, and R. Banerjee: Acta Materialia, 2012, vol. 60, pp. 5697-5711.CrossRefGoogle Scholar
  14. 14.
    A. Srivastava, and A. Needleman: Acta Materialia, 2013, vol. 61, pp. 6506-6516.CrossRefGoogle Scholar
  15. 15.
    Y. Hu, L. Zhang, C. Cheng, P. Zhao, T. Cao, G. Guo, and J. Zhao: Vacuum, 2018, vol. 150, pp. 105-115.CrossRefGoogle Scholar
  16. 16.
    M. Bensch, A. Sato, N. Warnken, E. Affeldt, R.C. Reed, and U. Glatzel: Acta Materialia, 2012, vol. 60, pp. 5468-5480.CrossRefGoogle Scholar
  17. 17.
    D. Shi, C. Dong, and X. Yang: Materials & Design, 2013, vol. 45, pp. 663-673.CrossRefGoogle Scholar
  18. 18.
    J.C. Stinville, K. Gallup, and T.M. Pollock: Metallurgical and Materials Transactions A, 2015, vol. 46A, pp. 2516-2529.CrossRefGoogle Scholar
  19. 19.
    J. Huang, D. Shi, and X. Yang: Science China Technological Sciences, 2014, vol. 57, pp. 1802-1815.CrossRefGoogle Scholar
  20. 20.
    P. Caron, P. J. Henderson, T. Khan, and M. Mclean: Scripta Metallurgica, 1986, vol. 20, pp. 875-880.CrossRefGoogle Scholar
  21. 21.
    P. Caron, and T. Khan: Materials Science and Engineering, 1983, vol. 61, pp. 173-194.CrossRefGoogle Scholar
  22. 22.
    P. Caron, Y. Ohta, Y.G. Nakagawa, and T. Khan: Superalloys 1988, Seven Springs, Champion, PA, 1988, TMS, pp. 215–24.Google Scholar
  23. 23.
    L. Mataveli Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, and L. Marcin: Materials at High Temperatures, 2016, vol. 33 (4-5), pp. 361-371.CrossRefGoogle Scholar
  24. 24.
    J. Cormier, X. Milhet, F. Vogel, and J. Mendez: Superalloys 2008, Seven Springs, Champion, PA, 2008, TMS, pp. 941–49.Google Scholar
  25. 25.
    J. Cormier, X. Milhet, and J. Mendez: Acta Materialia, 2007, vol. 55, pp. 6250-6259.CrossRefGoogle Scholar
  26. 26.
    F. Riallant, J. Cormier, A. Longuet, X. Milhet, and J. Mendez: Metallurgical and Materials Transactions A, 2014, vol. 45A, pp. 351-360.CrossRefGoogle Scholar
  27. 27.
    L. Mataveli Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, F. Mauget, G. Cailletaud, and L. Marcin: Superalloys 2016, Seven Springs, Champion, PA, 2016, TMS, pp. 747–56.Google Scholar
  28. 28.
    P. Kontis, D.M. Collins, S. Johansson, A.J. Wilkinson, J.J. Moverare, and R.C. Reed: Superalloys 2016, Seven Springs, Champion, PA, 2016, TMS, pp. 763-772.Google Scholar
  29. 29.
    P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, and B. Gault: Scripta Materialia, 2018, vol. 147, pp. 59-63.CrossRefGoogle Scholar
  30. 30.
    P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, and B. Gault: Scripta Materialia, 2018, vol. 148, pp. 76-80.CrossRefGoogle Scholar
  31. 31.
    Z. Shi, J. Li, and S. Liu: Progress in Natural Science: Materials International, 2012, vol. 22, pp. 426-432.CrossRefGoogle Scholar
  32. 32.
    S Steuer, Z Hervier, S Thabart, C Castaing, Tm Pollock, and J Cormier: Materials Science and Engineering: A, 2014, vol. 601, pp. 145-152.CrossRefGoogle Scholar
  33. 33.
    E. Aghion, M. Bamberger, and A. Berkovits: Journal of Materials Science, 1991, vol. 26, pp. 1873-1881.CrossRefGoogle Scholar
  34. 34.
    L. Mataveli Suave: PhD Thesis, ISAE-ENSMA, 2017.Google Scholar
  35. 35.
    L.M. Kachanov: Foundations of the Theory of Plasticity, 1971.Google Scholar
  36. 36.
    F.H. Norton: The Creep of Steel at High Temperatures, McGraw-Hill Book Company, Incorporated, 1929.Google Scholar
  37. 37.
    Y.N. Rabotnov: in Creep Rupture, Springer, 1969, pp. 342–49.Google Scholar
  38. 38.
    B. Wilshire, and P.J. Scharning: International Materials Reviews, 2008, vol. 53, pp. 91-104.CrossRefGoogle Scholar
  39. 39.
    B. Wilshire, P.J. Scharning, and R. Hurst: Energy Materials, 2007, vol. 2, pp. 84-88.CrossRefGoogle Scholar
  40. 40.
    A. Baldan: Journal of Materials Science, 1995, vol. 30, pp. 6288-6298.CrossRefGoogle Scholar
  41. 41.
    N. Matan, D.C. Cox, C.M.F. Rae, and R.C. Reed: Acta Materialia, 1999, vol. 47, pp. 2031-2045.CrossRefGoogle Scholar
  42. 42.
    R. Desmorat, A. Mattiello, and J. Cormier: International Journal of Plasticity, 2017, vol. 95, pp. 43-81.CrossRefGoogle Scholar
  43. 43.
    J.-B. le Graverend, J. Cormier, F. Gallerneau, P. Villechaise, S. Kruch, and J. Mendez: International Journal of Plasticity, 2014, vol. 59, pp. 55-83.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Lorena Mataveli Suave
    • 1
    • 2
  • Aïda Serrano Muñoz
    • 5
  • Anaïs Gaubert
    • 3
  • Guillaume Benoit
    • 1
  • Lionel Marcin
    • 2
  • Paraskevas Kontis
    • 4
  • Patrick Villechaise
    • 1
  • Jonathan Cormier
    • 1
  1. 1.Physics and Mechanics of Materials DepartmentInstitut Pprime, UPR CNRS 3346, ISAE-ENSMAFuturoscope-Chasseneuil CedexFrance
  2. 2.SAFRAN TechChateaufortFrance
  3. 3.SAFRAN Aircraft EnginesMoissy-CramayelFrance
  4. 4.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  5. 5.Industria de Turbo Propulsores (ITP)AlcobendasSpain

Personalised recommendations