Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4199–4213 | Cite as

On the Coupling between Recrystallization and Precipitation Following Hot Deformation in a γ-γ′ Nickel-Based Superalloy

  • Anthony Seret
  • Charbel Moussa
  • Marc Bernacki
  • Nathalie Bozzolo
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


Postdynamic recrystallization and γ′ precipitation during cooling from γ′ supersolvus temperature after hot compression were studied in the AD730 (AD730 is a trademark of Aubert et Duval Company in Paris, France) γ-γ′ nickel-based superalloy. Emphasis was on not only both phenomena as distinct mechanisms but also on their mutual influence in terms of physical mechanisms. The growth of γ′ precipitates is hastened in the unrecrystallized grains compared to the recrystallized ones. This could possibly be attributed to the higher dislocation content acting as high-diffusivity paths. Postdynamic recrystallization is not prevented by Smith–Zener pinning of the recrystallization front by the γ′ precipitates. Instead, the recrystallization front dissolves γ′ precipitates, which then reprecipitate discontinuously or continuously and coherently with the surrounding γ matrix in the recrystallized grains.



This project was carried out in the framework of the OPALE Industrial Chair funded by the French National Agency for Scientific Research ANR and the Safran Group. The Safran Aircraft Engines Company supplied the hot-compression samples. The authors are grateful for the help of G. Fiorucci in the development of the experimental setup for slow cooling and quenching at CEMEF.


  1. 1.
    A.J. Porter and B. Ralph: Mater. Sci. Eng., 1983, vol. 59, pp. 69–78.CrossRefGoogle Scholar
  2. 2.
    X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.X. Wen, J.L. Zhang, and M. He: Mater. Des., 2015, vol. 77, pp. 41–49.CrossRefGoogle Scholar
  3. 3.
    Y.C. Lin, J. Deng, Y.-Q. Jiang, D.-X. Wen, and G. Liu: Mater. Des., 2014, vol. 55, pp. 949–57.CrossRefGoogle Scholar
  4. 4.
    A Etaati, K Dehghani: Mater. Chem. Phys., 2013, vol. 140, pp. 208–15.CrossRefGoogle Scholar
  5. 5.
    Y. Ning, M.W. Fu, and X. Chen: Mater. Sci. Eng., 2012, vol. 540, pp. 164–73.CrossRefGoogle Scholar
  6. 6.
    D.-X. Wen, Y.C. Lin, H.-B. Li, X.-M. Chen, D.J., and L.L.-T.: Mater. Sci. Eng., 2014, vol. 591, pp. 183–92.CrossRefGoogle Scholar
  7. 7.
    X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He: Mater. Des., 2014, vol. 57, pp. 568–77.CrossRefGoogle Scholar
  8. 8.
    X. Tang, B. Wang, H. Ji, X. Fu, and W. Xiao: Mater. Sci. Eng., 2016, vol. 675A, pp. 192–203.CrossRefGoogle Scholar
  9. 9.
    L.X. Zhou and T.N. Baker: Mater. Sci. Eng., 1995, vol. 196, pp. 89–95.CrossRefGoogle Scholar
  10. 10.
    R.P. Guest and S. Tin: Proc. 6th Int. Symp. on Superalloys 718, 625, 706 and Derivatives, Pittsburgh, PA, May 17–20, 2005.Google Scholar
  11. 11.
    A. Devaux, A. Helstroffer, J. Cormier, and F. Pettinari-Sturmel: Proc. 8th Int. Symp. on Superalloy 718 and Derivatives, Pittsburgh, PA, Sept. 28–Oct. 1, 2014.Google Scholar
  12. 12.
    C. Slama and M. Abdellaoui, J. Alloys Compd., 2000, vol. 306, pp. 277–84.CrossRefGoogle Scholar
  13. 13.
    M. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.CrossRefGoogle Scholar
  14. 14.
    F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier: J. Alloys Compd., 2016, vol. 658, pp. 988–95.CrossRefGoogle Scholar
  15. 15.
    A. Devaux, L. Berglin, L. Thebaud, R. Delattre, C. Crozet, and O. Nodin: MATEC Web Conf., 2014, vol. 14, p. 01004.CrossRefGoogle Scholar
  16. 16.
    F. Masoumi, D. Shahriari, M. Jahazi, J. Cormier, and A. Devaux: Sci. Rep., 2015, vol. 6, p. 28650.CrossRefGoogle Scholar
  17. 17.
    K. Teichmann, C.D. Marioara, S.J. Andersen, and K. Marthinsen: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4006–14.CrossRefGoogle Scholar
  18. 18.
    G. Trotter, G. Rayner, I. Baker, and P.R. Munroe: Intermetallics, 2014, vol. 53, pp. 120–28.CrossRefGoogle Scholar
  19. 19.
    L. Mataveli Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and D. Laigo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2963–82.CrossRefGoogle Scholar
  20. 20.
    Y. Mei, Y. Liu, C. Liu, and H. Li: J. Alloys Compd., 2015, vol. 649, pp. 949–60.CrossRefGoogle Scholar
  21. 21.
    H. Yang, Z. Li, and M. Huang: Comput. Mater. Sci., 2013, vol. 75, pp. 52–59.CrossRefGoogle Scholar
  22. 22.
    M.-A. Charpagne: Ph.D. Dissertation, CEMEF, Mines ParisTech, Paris, 2016.Google Scholar
  23. 23.
    D. Turnbull and R.E. Hoffman: Acta Metall., 1954, vol. 2, p. 419.CrossRefGoogle Scholar
  24. 24.
    J.W. Cahn: Acta Metall., 1957, vol. 5, pp. 169–72.CrossRefGoogle Scholar
  25. 25.
    Thermo-Calc, Nickel Base Superalloys database, Thermo-Calc Software, Solna, Sweden.Google Scholar
  26. 26.
    R. Doherty: Met. Sci., 1982, vol. 16, pp. 1–14.CrossRefGoogle Scholar
  27. 27.
    V. Randle and B. Ralph: Acta Metall., 1986, vol. 34, pp. 891–98.CrossRefGoogle Scholar
  28. 28.
    A.J. Porter: J. Mater. Sci., 1981, vol. 16, pp. 707–13.CrossRefGoogle Scholar
  29. 29.
    H. Lia, F. Yea, T. Zhaoa, T. Caoa, F. Xub, Q. Xua, Y. Wangb, C. Chenga, and X. Mina: Mater. Sci. Eng., 2018, vol. 714A, pp. 172–78.CrossRefGoogle Scholar
  30. 30.
    A. Seret, C. Moussa, M. Bernacki, N. Bozzolo, and J. Signorelli: J. Appl. Crystallogr., 2018, submitted for publication.Google Scholar
  31. 31.
    M. Doi and T. Miyazaki: Superalloys, TMS, Warrendale, PA, 1984.Google Scholar
  32. 32.
    M. Doi, D. Miki, T. Moritami, and T. Kozakai: Superalloys, TMS, Warrendale, PA, 2004.Google Scholar
  33. 33.
    D.W. Scott: Biometrika, 1979, vol. 66, pp. 605–10.CrossRefGoogle Scholar
  34. 34.
    I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Anthony Seret
    • 1
  • Charbel Moussa
    • 1
  • Marc Bernacki
    • 1
  • Nathalie Bozzolo
    • 1
  1. 1.MINES ParisTech, PSL – Research University, CEMEF–Centre de Mise en Forme des Matériaux, CNRS UMR 7635Sophia Antipolis CedexFrance

Personalised recommendations