Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4158–4166 | Cite as

Atomistic Simulations of Compression Tests on γ-Precipitate Containing Ni3Al Nanocubes

  • Frédéric HoulléEmail author
  • Flynn Walsh
  • Aruna Prakash
  • Erik Bitzek
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


The influence of \(\gamma \) precipitates on the deformation behavior of \(\gamma '\) Ni\(_{3}\)Al nanocubes with {100} side surfaces is investigated by molecular dynamics simulations of uniaxial compression tests at 300 K. The plastic deformation of the nanocubes is caused by the nucleation of Shockley partial dislocations near the cube corners followed by the formation of pseudo-twins. While the dominant deformation mechanisms and the flow stress are not affected by the presence of \(\gamma \) precipitates, the precipitates reduce the yield stress by up to 10 pct and determine the location of dislocation nucleation. These findings can be rationalized by accounting for the misfit stresses caused by the presence of the \(\gamma \) precipitates. Within the simulated ranges, the results are independent of cube size, rounding of the cube or precipitate corners, surface roughness, and strain rate. The observed precipitate softening in the dislocation-nucleation-controlled deformation of \(\gamma '\) Ni\(_{3}\)Al nanocubes is in stark contrast to the strengthening effect caused by the presence of a \(\gamma \) phase in the \(\gamma '\) precipitates in the microstructure of typical Ni- and Co-based superalloys.



The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through projects C3 (atomistic simulations) of SFB/Transregio 103 (Single Crystal Superalloys), and within the Cluster of Excellence “Engineering of Advanced Materials” (Project EXC 315) (Bridge Funding). FW thanks the Deutscher Akademischer Austauschdienst (DAAD) for its support through the Research Internships in Science and Engineering (RISE) scholarship program. Computing resources were provided by the Regionales RechenZentrum Erlangen (RRZE).


  1. 1.
    R. C. Reed, The Superalloys, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  2. 2.
    T. M. Pollock and S. Tin, J. Propul. Power, 2006, vol. 22, 2, pp. 361–374.CrossRefGoogle Scholar
  3. 3.
    A. Prakash, J. Guenole, J. Wang, J. Muller, E. Spiecker, M. J. Mills, I. Povstugar, P. Choi, D. Raabe and E. Bitzek, Acta Mater., 2015, vol. 92, pp. 33–45.CrossRefGoogle Scholar
  4. 4.
    R. K. Ham, R. H. Cook and G. R. Purdy, Met. Sci. J., 1972, vol. 6, 1, pp. 73–77.CrossRefGoogle Scholar
  5. 5.
    J. Radavich and W. Couts, Trans. ASM, 1961, vol. 54, pp. 591–597.Google Scholar
  6. 6.
    R. K. Ham, R. H. Cook, G. R. Purdy and G. Willoughby, Met. Sci. J., 1972, vol. 6, 1, pp. 205–210.CrossRefGoogle Scholar
  7. 7.
    H. F. Merrick, Metall. Trans., 1973, vol. 4, 3, pp. 885–887.CrossRefGoogle Scholar
  8. 8.
    L. R. Cornwell and G. R. Purdy, Metall. Trans., 1974, vol. 5, 3, pp. 780–781.CrossRefGoogle Scholar
  9. 9.
    F. Vogel, N. Wanderka, Z. Balogh, M. Ibrahim, P. Stender, G. Schmitz and J. Banhart, Nat. Commun., 2013, vol. 4, pp. 1–7.Google Scholar
  10. 10.
    V. Yardley, I. Povstugar, P. P. Choi, D. Raabe, A. B. Parsa, A. Kostka, C. Somsen, A. Dlouhy, K. Neuking, E. P. George and G. Eggeler, Advanced Engineering Materials, 2016, vol. 18, 9, pp. 1556–1567.CrossRefGoogle Scholar
  11. 11.
    W. Tian, T. Sano and M. Nemoto, Scr. Metall., 1986, vol. 20, 6, pp. 933–936.CrossRefGoogle Scholar
  12. 12.
    Y. Ma and A. J. Ardell, Acta Mater., 2007, vol. 55, 13, pp. 4419–4427.CrossRefGoogle Scholar
  13. 13.
    T. Pretorius, D. Baither and E. Nembach, Acta Mater., 2001, vol. 49, 11, pp. 1981–1985.CrossRefGoogle Scholar
  14. 14.
    A. Takahashi, M. Kawanabe and M. Kikuchi, Adv. Mater. Res., 2008, vol. 33-37, pp. 815–820.CrossRefGoogle Scholar
  15. 15.
    A. Takahashi, M. Kawanabe, N. Kikai, G. Ronbunshu, A. Hen, Trans. Jpn. Soc. Mech. Eng. A, 2009, vol. 75(753), pp. 595–603.CrossRefGoogle Scholar
  16. 16.
    A. Takahashi, M. Kawanabe and N. M. Ghoniem, Philos. Mag., 2010, vol. 90, 27-28, pp. 3767–3786.CrossRefGoogle Scholar
  17. 17.
    A. Takahashi and Y. Terada, Key Eng. Mater., 2011, vol. 462-463, pp. 425–430.CrossRefGoogle Scholar
  18. 18.
    D. Mukherji, R. Müller, R. Gilles, P. Strunz, J. Rösler and G. Kostorz, Nanotechnology, 2004, vol. 15, 5, pp. 648–657.CrossRefGoogle Scholar
  19. 19.
    J. Schloesser, J. Rösler and D. Mukherji, Int. J. Mater. Res., 2011, vol. 102, 5, pp. 532–537.CrossRefGoogle Scholar
  20. 20.
    R. Maaß, L. Meza, B. Gan, S. Tin and J. Greer, Small, 2012, vol. 8, 12, pp. 1869–1875.CrossRefGoogle Scholar
  21. 21.
    A. Landefeld, W. M. Mook, J. Rösler and J. Michler, ISRN Nanomater., 2012, vol. 2012, pp. 1–4.CrossRefGoogle Scholar
  22. 22.
    J. Amodeo, C. Begau and E. Bitzek, Mater. Res. Lett., 2014, vol. 2, 3, pp. 140–145.CrossRefGoogle Scholar
  23. 23.
    K. Shreiber and D. Mordehai, Model. Numer. Simul. Mater. Sci., 2015, vol. 23, 8, p. 085004.CrossRefGoogle Scholar
  24. 24.
    J. Amodeo and K. Lizoul, Mater. Des., 2017, vol. 135, pp. 223–231.CrossRefGoogle Scholar
  25. 25.
    K.K. Sankaran and R.S. Mishra: Metallurgy and Design of Alloys with Hierarchical Microstructures. Elsevier, Amsterdam (2017).Google Scholar
  26. 26.
    IMD: The ITAP Molecular Dynamics Program., 1996. Accessed 22 Jan 2018.
  27. 27.
    E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Phys. Rev. Lett., 2006, vol. 97, 17, p. 170201.CrossRefGoogle Scholar
  28. 28.
    A. Sedlmayr, E. Bitzek, D. S. Gianola, G. Richter, R. Mö Nig and O. Kraft, Acta Mater., 2012, vol. 60, pp. 3985–3993.CrossRefGoogle Scholar
  29. 29.
    A. Prakash, M. Hummel, S. Schmauder and E. Bitzek, MethodsX, 2015, vol. 3, pp. 219–230.CrossRefGoogle Scholar
  30. 30.
    K. J. Van Vliet, J. Li, T. Zhu, S. Yip and S. Suresh, Phys. Rev. B, 2003, vol. 67, 10, p. 104105.CrossRefGoogle Scholar
  31. 31.
    W.G. Hoover, Phys. Rev. A, 1985, vol. 31, 3, pp. 1695–1697.CrossRefGoogle Scholar
  32. 32.
    J. P. Du, C. Y. Wang and T. Yu, Model. Numer. Simul. Mater. Sci., 2013, vol. 21, 1, p. 015007.CrossRefGoogle Scholar
  33. 33.
    D. Faken and H. Jónsson, Comput. Mater. Sci., 1994, vol. 2, 2, pp. 279–286.CrossRefGoogle Scholar
  34. 34.
    G. J. Ackland and A. P. Jones, Phys. Rev. B, 2006, vol. 73, 5, p. 054104.CrossRefGoogle Scholar
  35. 35.
    C. Begau: AtomViewer., 2014. Accessed 22 Jan 2018.
  36. 36.
    C. Hartley and Y. Mishin, Acta Mater., 2005, vol. 53, 5, pp. 1313–1321.CrossRefGoogle Scholar
  37. 37.
    C. Begau, A. Hartmaier, E. George and G. Pharr, Acta Mater., 2011, vol. 59, 3, pp. 934–942.CrossRefGoogle Scholar
  38. 38.
    C. Begau, J. Hua and A. Hartmaier, J. Mech. Phys. Solids, 2012, vol. 60, 4, pp. 711–722.CrossRefGoogle Scholar
  39. 39.
    J.P. Hirth and J. Lothe: Theory of Dislocations. Wiley, New York, 1982.Google Scholar
  40. 40.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press: Oxford, UK, 1996.Google Scholar
  41. 41.
    A. Prakash and E. Bitzek, Materials, 2017, vol. 10, 1, p. 88.CrossRefGoogle Scholar
  42. 42.
    A. Stukowski, Model. Numer. Simul. , 2010, vol. 18, 1, p. 015012.CrossRefGoogle Scholar
  43. 43.
    J. R. Greer and J. T. M. De Hosson, Prog. Mater. Sci., 2011, vol. 56, 6, pp. 654–724.CrossRefGoogle Scholar
  44. 44.
    B. Gan, H. Murakami, R. Maaß, L. Meza, J. Greer, T. Ohmura, and S. Tin: Superalloys 2012, Proceedings of 12th International Symposium, Wiley, Hoboken, 2012, pp. 83–91.Google Scholar
  45. 45.
    A. Frøseth, H. Van Swygenhoven and P. Derlet, Acta Mater., 2004, vol. 52, 8, pp. 2259–2268.CrossRefGoogle Scholar
  46. 46.
    H. Van Swygenhoven, P. M. Derlet and A. G. Frøseth, Nat. Mater., 2004, vol. 3, 6, pp. 399–403.CrossRefGoogle Scholar
  47. 47.
    H. Van Swygenhoven, P. Derlet and A. Frøseth, Acta Mater., 2006, vol. 54, 7, pp. 1975–1983.CrossRefGoogle Scholar
  48. 48.
    Z. Jin, S. Dunham, H. Gleiter, H. Hahn and P. Gumbsch, Scr. Mater., 2011, vol. 64, 7, pp. 605–608.CrossRefGoogle Scholar
  49. 49.
    M. Kolbe, Mater. Sci. Eng., A, 2001, vol. 319-321, pp. 383–387.CrossRefGoogle Scholar
  50. 50.
    L. Kovarik, R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang and M. Mills, Prog. Mater. Sci., 2009, vol. 54, 6, pp. 839–873.CrossRefGoogle Scholar
  51. 51.
    W. Gerberich, E. Tadmor, J. Kysar, J. Zimmerman, A. Minor, I. Szlufarska, J. Amodeo, B. Devincre, E. Hintsala and R. Ballarini, J. Vac. Sci. Technol., 2017, vol. 35, 6.CrossRefGoogle Scholar
  52. 52.
    L. E. Murr, Interfacial phenomena in metals and alloys, Addison-Wesley, MA, 1975.Google Scholar
  53. 53.
    H. Karnthaler, E. Mühlbacher and C. Rentenberger, Acta Mater., 1996, vol. 44, 2, pp. 547–560.CrossRefGoogle Scholar
  54. 54.
    A. J. Ardell and M. Pozuelo, Intermetallics, 2017, vol. 88, pp. 81–90.CrossRefGoogle Scholar
  55. 55.
    R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang and M. Mills, Acta Mater., 2011, vol. 59, 19, pp. 7325–7339.CrossRefGoogle Scholar
  56. 56.
    N. Zhou, C. Shen, M.J. Mills, J. Li, Y. Wang: Acta Mater., 2011, vol. 59(9), pp. 3484–3497.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Frédéric Houllé
    • 1
    Email author
  • Flynn Walsh
    • 1
    • 2
  • Aruna Prakash
    • 1
  • Erik Bitzek
    • 1
  1. 1.Department of Materials Science & Engineering, Institute IUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Materials DepartmentUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations