Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4099–4109 | Cite as

Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys

  • N. Volz
  • C. H. Zenk
  • R. Cherukuri
  • T. Kalfhaus
  • M. Weiser
  • S. K. Makineni
  • C. Betzing
  • M. Lenz
  • B. Gault
  • S. G. Fries
  • J. Schreuer
  • R. Vaßen
  • S. Virtanen
  • D. Raabe
  • E. Spiecker
  • S. Neumeier
  • M. Göken
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


A set of advanced single crystalline γ′ strengthened Co-base superalloys with at least nine alloying elements (Co, Ni, Al, W, Ti, Ta, Cr, Si, Hf, Re) has been developed and investigated. The objective was to generate multinary Co-base superalloys with significantly improved properties compared to the original Co-Al-W-based alloys. All alloys show the typical γ/γ′ two-phase microstructure. A γ′ solvus temperature up to 1174 °C and γ′ volume fractions between 40 and 60 pct at 1050 °C could be achieved, which is significantly higher compared to most other Co-Al-W-based superalloys. However, higher contents of Ti, Ta, and the addition of Re decrease the long-term stability. Atom probe tomography revealed that Re does not partition to the γ phase as strongly as in Ni-base superalloys. Compression creep properties were investigated at 1050 °C and 125 MPa in 〈001〉 direction. The creep resistance is close to that of first generation Ni-base superalloys. The creep mechanisms of the Re-containing alloy was further investigated and it was found that the deformation is located preferentially in the γ channels although some precipitates are sheared during early stages of creep. The addition of Re did not improve the mechanical properties and is therefore not considered as a crucial element in the design of future Co-base superalloys for high temperature applications. Thermodynamic calculations describe well how the alloying elements influence the transformation temperatures although there is still an offset in the actual values. Furthermore, a full set of elastic constants of one of the multinary alloys is presented, showing increased elastic stiffness leading to a higher Young’s modulus for the investigated alloy, compared to conventional Ni-base superalloys. The oxidation resistance is significantly improved compared to the ternary Co-Al-W compound. A complete thermal barrier coating system was applied successfully.



The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through projects B3, C6, B6, A5, A4, A1, and A7 of the collaborative research centre SFB/TR 103 “From Atoms to Turbine Blades—a Scientific Approach for Developing the Next Generation of Single Crystal Superalloys.” SKM, BG, DR are grateful to U. Tezins and A. Sturm for their technical support of the atom probe tomography and focused ion beam facilities at the Max-Planck-Institut für Eisenforschung.


  1. 1.
    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Scr. Mater., 2010, vol. 63, pp. 1197–200.CrossRefGoogle Scholar
  2. 2.
    T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: JOM, 2010, vol. 62, pp. 58–63.CrossRefGoogle Scholar
  3. 3.
    J. Koßmann, C.H. Zenk, I. Lopez-Galilea, S. Neumeier, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz, and T. Hammerschmidt: J. Mater. Sci., 2015, vol. 50, pp. 6329–38.CrossRefGoogle Scholar
  4. 4.
    K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui: Philos. Mag., 2012, vol. 92, pp. 4011–27.CrossRefGoogle Scholar
  5. 5.
    A. Suzuki: Acta Mater., 2008, vol. 56, pp. 1288–97.CrossRefGoogle Scholar
  6. 6.
    K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Mater. Trans., 2008, vol. 49, pp. 1474–1479.CrossRefGoogle Scholar
  7. 7.
    T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, and K. Ishida: Intermetallics, 2013, vol. 32, pp. 274–83.CrossRefGoogle Scholar
  8. 8.
    S. Kobayashi, Y. Tsukamoto, and T. Takasugi: Intermetallics, 2012, vol. 31, pp. 94–8.CrossRefGoogle Scholar
  9. 9.
    S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, and K. Chattopadhyay: Acta Mater., 2015, vol. 97, pp. 29–40.CrossRefGoogle Scholar
  10. 10.
    E.A. Lass, D.J. Sauza, D.C. Dunand, and D.N. Seidman: Acta Mater., 2018, vol. 147, pp. 284–95.CrossRefGoogle Scholar
  11. 11.
    C.H. Zenk, S. Neumeier, H.J. Stone, and M. Göken: Intermetallics, 2014, vol. 55, pp. 28–39.CrossRefGoogle Scholar
  12. 12.
    I. Povstugar, P.-P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe: Acta Mater., 2014, vol. 78, pp. 78–85.CrossRefGoogle Scholar
  13. 13.
    A. Suzuki, G.C. DeNolf, and T.M. Pollock: Scr. Mater., 2007, vol. 56, pp. 385–8.CrossRefGoogle Scholar
  14. 14.
    S. Neumeier, L.P. Freund, and M. Göken: Scr. Mater., 2015, vol. 109, pp. 104–7.CrossRefGoogle Scholar
  15. 15.
    E.A. Lass: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2443–59.CrossRefGoogle Scholar
  16. 16.
    M.S. Titus, A. Suzuki, and T.M. Pollock: Scr. Mater., 2012, vol. 66, pp. 574–7.CrossRefGoogle Scholar
  17. 17.
    Thermo-Calc Software, Database TCNI8, Version 2017a, 2017.Google Scholar
  18. 18.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–9.CrossRefGoogle Scholar
  19. 19.
    H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method. Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
  20. 20.
    J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  21. 21.
    C.H. Zenk, S. Neumeier, M. Kolb, N. Volz, S.G. Fries, O. Dolotko, I. Povstugar, D. Raabe, and M. Göken: in Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys.Google Scholar
  22. 22.
    J. Sato: Science, 2006, vol. 312, pp. 90–1.CrossRefGoogle Scholar
  23. 23.
    I. Povstugar, C.H. Zenk, R. Li, P.-P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, and D. Raabe: Mater. Sci. Technol., 2016, vol. 32, pp. 220–5.CrossRefGoogle Scholar
  24. 24.
    H. Chinen, J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Scr. Mater., 2007, vol. 56, pp. 141–3.CrossRefGoogle Scholar
  25. 25.
    C.H. Zenk, A. Bauer, P. Goik, S. Neumeier, H.J. Stone, and M. Göken: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2141–9.CrossRefGoogle Scholar
  26. 26.
    F. Pyczak, B. Devrient, and H. Mughrabi: Superalloys 2004, 2004, pp. 827–836.Google Scholar
  27. 27.
    C.M. Rae and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113–4125.CrossRefGoogle Scholar
  28. 28.
    S. Tin and T.M. Pollock: Mater. Sci. Eng. A, 2003, vol. 348, pp. 111–121.CrossRefGoogle Scholar
  29. 29.
    T.M. Pollock: Mater. Sci. Eng. B, 1995, vol. 32, pp. 255–266.CrossRefGoogle Scholar
  30. 30.
    M. Pröbstle, S. Neumeier, P. Feldner, R. Rettig, H.E. Helmer, R.F. Singer, and M. Göken: Mater. Sci. Eng. A, 2016, vol. 676, pp. 411–20.CrossRefGoogle Scholar
  31. 31.
    P.J. Bocchini, E.A. Lass, K.-W. Moon, M.E. Williams, C.E. Campbell, U.R. Kattner, D.C. Dunand, and D.N. Seidman: Scr. Mater., 2013, vol. 68, pp. 563–6.CrossRefGoogle Scholar
  32. 32.
    S. Meher, H.-Y. Yan, S. Nag, D. Dye, and R. Banerjee: Scr. Mater., 2012, vol. 67, pp. 850–3.CrossRefGoogle Scholar
  33. 33.
    C.C. Jia, K. Ishida, and T. Nishizawa: Metall. Mater. Trans. A, 1994, vol. 25, pp. 473–485.CrossRefGoogle Scholar
  34. 34.
    M. Kolb, C.H. Zenk, A. Kirzinger, I. Povstugar, D. Raabe, S. Neumeier, and M. Göken: J. Mater. Res., 2017, vol. 32, pp. 2551–9.CrossRefGoogle Scholar
  35. 35.
    L.J. Carroll, Q. Feng, J.F. Mansfield, and T.M. Pollock: Mater. Sci. Eng. A, 2007, vol. 457, pp. 292–9.CrossRefGoogle Scholar
  36. 36.
    H. Murakami, T. Honma, Y. Koizumi, and H. Harada: Superalloys 2000, 2000, pp. 747–756.Google Scholar
  37. 37.
    R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, and M.K. Miller: Scr. Mater., 2004, vol. 51, pp. 327–31.CrossRefGoogle Scholar
  38. 38.
    B. Roebuck, D. Cox, and R. Reed: Scr. Mater., 2001, vol. 44, pp. 917–921.CrossRefGoogle Scholar
  39. 39.
    E.H. Van Der Molen, J.M. Oblak, and O.H. Kriege: Metall. Mater. Trans. B, 1971, vol. 2, pp. 1627–1633.Google Scholar
  40. 40.
    H.M. Tawancy, N.M. Abbas, A.I. Al-Mana, and T.N. Rhys-Jones: J. Mater. Sci., 1994, vol. 29, pp. 2445–2458.CrossRefGoogle Scholar
  41. 41.
    K. Demtröder, G. Eggeler, and J. Schreuer: Mater. Werkst., 2015, vol. 46, pp. 563–76.CrossRefGoogle Scholar
  42. 42.
    R.W. Jackson, M.S. Titus, M.R. Begley, and T.M. Pollock: Surf. Coat. Technol., 2016, vol. 289, pp. 61–8.CrossRefGoogle Scholar
  43. 43.
    Q. Yao, S.-L. Shang, K. Wang, F. Liu, Y. Wang, Q. Wang, T. Lu, and Z.-K. Liu: J. Mater. Res., 2017, vol. 32, pp. 2100–8.CrossRefGoogle Scholar
  44. 44.
    M.S.A. Karunaratne, S. Kyaw, A. Jones, R. Morrell, and R.C. Thomson: J. Mater. Sci., 2016, vol. 51, pp. 4213–26.CrossRefGoogle Scholar
  45. 45.
    P.K. Sung and D.R. Poirier: Mater. Sci. Eng. A, 1998, vol. 245, pp. 135–141.CrossRefGoogle Scholar
  46. 46.
    H. Morrow, D.L. Sponseller, and M. Semchyshen: Metall. Trans. A, 1975, vol. 6, p. 477.CrossRefGoogle Scholar
  47. 47.
    D. Siebörger, H. Knake, and U. Glatzel: Mater. Sci. Eng. A, 2001, vol. 298, pp. 26–33.CrossRefGoogle Scholar
  48. 48.
    X. Zhang, P.R. Stoddart, J.D. Comins, and A.G. Every: J. Phys. Condens. Matter, 2001, vol. 13, p. 2281.CrossRefGoogle Scholar
  49. 49.
    L.P. Freund, S. Giese, D. Schwimmer, H.W. Höppel, S. Neumeier, and M. Göken: J. Mater. Res., 2017, vol. 32, pp. 4475–82.CrossRefGoogle Scholar
  50. 50.
    K. Tanaka, T. Ohashi, K. Kishida, and H. Inui: Appl. Phys. Lett., 2007, vol. 91, p. 181907.CrossRefGoogle Scholar
  51. 51.
    L. Klein, Y. Shen, M.S. Killian, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2713–20.CrossRefGoogle Scholar
  52. 52.
    F.H. Stott, G.C. Wood, and J. Stringer: Oxid. Met., 1995, vol. 44, pp. 113–45.CrossRefGoogle Scholar
  53. 53.
    L. Klein, M.S. Killian, and S. Virtanen: Corros. Sci., 2013, vol. 69, pp. 43–9.CrossRefGoogle Scholar
  54. 54.
    R.A. Miller: J. Therm. Spray Technol., 1997, vol. 6, p. 35.CrossRefGoogle Scholar
  55. 55.
    N.P. Padture, M. Gell, and E.H. Jordan: Science, 2002, vol. 296, pp. 280–284.CrossRefGoogle Scholar
  56. 56.
    W.S. Walston, J.C. Schaeffer, and W.H. Murphy: Superalloys 1996, 1996, pp. 9–18.Google Scholar
  57. 57.
    W.S. Walston, K.S. O’Hara, E.W. Ross, T.M. Pollock, and W.H. Murphy: Superalloys, 1996, vol. 1996, pp. 27–34.Google Scholar
  58. 58.
    F. Pyczak, S. Neumeier, and M. Göken: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 295–300.CrossRefGoogle Scholar
  59. 59.
    K. Durst and M. Göken: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 312–6.CrossRefGoogle Scholar
  60. 60.
    G.L. Erickson: Superalloys, 1996, vol. 1996, p. 35.Google Scholar
  61. 61.
    S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken: Acta Mater., 2016, vol. 106, pp. 304–12.CrossRefGoogle Scholar
  62. 62.
    S. Schuwalow, J. Rogal, and R. Drautz: J. Phys. Condens. Matter, 2014, vol. 26, p. 485014.CrossRefGoogle Scholar
  63. 63.
    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.CrossRefGoogle Scholar
  64. 64.
    R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–3381.CrossRefGoogle Scholar
  65. 65.
    T. Link, A. Epishin, M. Klaus, U. Brückner, and A. Reznicek: Mater. Sci. Eng. A, 2005, vol. 405, pp. 254–65.CrossRefGoogle Scholar
  66. 66.
    L. Agudo Jácome, P. Nörtershäuser, J.-K. Heyer, A. Lahni, J. Frenzel, A. Dlouhy, C. Somsen, and G. Eggeler: Acta Mater., 2013, vol. 61, pp. 2926–43.CrossRefGoogle Scholar
  67. 67.
    A.C. Yeh and S. Tin: Scr. Mater., 2005, vol. 52, pp. 519–24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • N. Volz
    • 1
  • C. H. Zenk
    • 1
  • R. Cherukuri
    • 2
  • T. Kalfhaus
    • 3
  • M. Weiser
    • 4
  • S. K. Makineni
    • 5
  • C. Betzing
    • 6
  • M. Lenz
    • 7
  • B. Gault
    • 5
  • S. G. Fries
    • 2
  • J. Schreuer
    • 6
  • R. Vaßen
    • 3
  • S. Virtanen
    • 4
  • D. Raabe
    • 5
  • E. Spiecker
    • 7
  • S. Neumeier
    • 1
  • M. Göken
    • 1
  1. 1.Department of Material Science and Engineering, Institute IFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.ICAMSRuhr-Universität BochumBochumGermany
  3. 3.Institut für Energie- und Klimaforschung (IEK-1)Forschungszentrum Jülich GmbHJülichGermany
  4. 4.Department of Material Science and Engineering, Institute IVFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  5. 5.Department of Microstructure Physics and Alloy DesignMax-Planck-Institut für EisenforschungDüsseldorfGermany
  6. 6.Institute for Geology, Mineralogy and GeophysicsRuhr-Universität BochumBochumGermany
  7. 7.Department of Material Science and Engineering, Institute IXFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations