Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4186–4198 | Cite as

Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys

  • T. M. Smith
  • B. D. Esser
  • B. Good
  • M. S. Hooshmand
  • G. B. Viswanathan
  • C. M. F. Rae
  • M. Ghazisaeidi
  • D. W. McComb
  • M. J. Mills
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ′ to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.



Funding for this study was provided by NASA’s Aeronautics Research Mission Directorate (ARMD) – Convergent Aeronautics Solutions Project and NASA’s Advanced Air Transport Technology (AATT) Project Office (ARMD). Further funding was provided by the National Science Foundation and the DMREF program under Grant #1534826.


  1. 1.
    P.H. Thornton, R.G. Davies, and T.L. Johnston: Metall. Trans., 1970, vol. 1, pp. 207-218.Google Scholar
  2. 2.
    P.P. Swu-Jian Liang: Acta Mater., 1976, vol. 25, pp. 485–93.CrossRefGoogle Scholar
  3. 3.
    P.B. Hirsch: Philos. Mag. A, 1992, vol. 65, pp. 569–612.CrossRefGoogle Scholar
  4. 4.
    D.P. Pope and V. Vitek: Acta Mater., 1984, vol. 32, pp. 435–48.CrossRefGoogle Scholar
  5. 5.
    T.M. Smith, R.R. Unocic, H. Deutchman, and M.J. Mills: Mater. High Temp., 2016, vol. 33, pp. 372–83.CrossRefGoogle Scholar
  6. 6.
    L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills: Prog. Mater. Sci., 2009, vol. 54, pp. 839–73.CrossRefGoogle Scholar
  7. 7.
    D.M. Knowles and Q.Z. Chen: Mater. Sci. Eng. A, 2003, vol. 340, pp. 88–102.CrossRefGoogle Scholar
  8. 8.
    R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, and M.J. Mills: Acta Mater., 2011, vol. 59, pp. 7325–39.CrossRefGoogle Scholar
  9. 9.
    B.H. Kear, A.F. Giamei, G.R. Leverant, and J.M. Oblak: Scr. Metall., 1969, vol. 3, pp. 455–60.CrossRefGoogle Scholar
  10. 10.
    B.H. Kear, J.M. Oblak, and A.F. Giamei: Metall. Trans., 1970, vol. I, pp. 2477–86.Google Scholar
  11. 11.
    M. Kolbe: Mater. Sci. Eng., 2001, vol. 319, pp. 383-387.CrossRefGoogle Scholar
  12. 12.
    L. Kovarik, R.R. Unocic, J. Li, and M.J. Mills: JOM, 2009, vol. 61, pp. 42–8.CrossRefGoogle Scholar
  13. 13.
    V.A. Vorontsov, L. Kovarik, M.J. Mills, and C.M.F. Rae: Acta Mater., 2012, vol. 60, pp. 4866–78.CrossRefGoogle Scholar
  14. 14.
    Y. Rao, T.M. Smith, M.J. Mills, and M. Ghazisaeidi: Acta Mater., 2018, vol. 148, pp. 173-184.CrossRefGoogle Scholar
  15. 15.
    D. Qi, D. Wang, K. Du, Y. Qi, L. Lou, J. Zhang, and H. Ye: J. Alloys Compd., 2018, vol. 735, pp. 813–20.CrossRefGoogle Scholar
  16. 16.
    M. Condat and B. Decamps: Scr. Metall., 1987, vol. 21, pp. 607–12.CrossRefGoogle Scholar
  17. 17.
    P. Caron, T. Khan, and P. Veyssiere: Philos. Mag. A, 1988, vol. 57, pp. 859–75.CrossRefGoogle Scholar
  18. 18.
    A. Varschavsky: Scr. Mater., 1975, vol. 9, pp. 391–8.CrossRefGoogle Scholar
  19. 19.
    S.J. Pennycook: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 171-95.CrossRefGoogle Scholar
  20. 20.
    G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, L. Kovarik, C.M.F. Rae, and M.J. Mills: Acta Mater., 2015, vol. 94, pp. 5-8.Google Scholar
  21. 21.
    M.S. Titus, A. Mottura, G.B. Viswanathan, A. Suzuki, J. Mills, and T.M. Pollock: Acta Mater., 2015, vol. 89, pp. 423–37.CrossRefGoogle Scholar
  22. 22.
    D. Barba, S. Pedrazzini, A. Vilalta-clemente, A.J. Wilkinson, M.P. Moody, and P.A.J. Bagot: Scr. Mater., 2017, vol. 127, pp. 37–40.CrossRefGoogle Scholar
  23. 23.
    T.M. Smith, Y. Rao, Y. Wang, M. Ghazisaeidi, and M.J. Mills: Acta Mater., 2017, vol. 141, pp. 261–72.CrossRefGoogle Scholar
  24. 24.
    L.P. Freund, O.M.D.M. Mess, J.S. Barnard, M. Goken, S. Neumeier, and C.M.F. Rae: Acta Mater., 2017, vol. 123, pp. 295–304.CrossRefGoogle Scholar
  25. 25.
    T.M. Smith, B.D. Esser, N. Antolin, G.B. Viswanathan, T. Hanlon, A. Wessman, D. Mourer, W. Windl, D.W. McComb, and M.J. Mills: Acta Mater., 2015, vol. 100, pp. 19–31.CrossRefGoogle Scholar
  26. 26.
    T.M. Smith, B.D. Esser, N. Antolin, A. Carlsson, R.E.A. Williams, A. Wessman, T. Hanlon, H.L. Fraser, W. Windl, D.W. McComb, and M.J. Mills: Nat. Commun., 2016, vol. 7, pp. 1-7.Google Scholar
  27. 27.
    C. Ophus and J. Ciston: Ultramicroscopy., 2016, vol. 162, pp. 1-9.CrossRefGoogle Scholar
  28. 28.
    P.J. Phillips, M.J. Mills, and M. De Graef: Philos. Mag., 2011, vol. 91, pp. 2081–101.CrossRefGoogle Scholar
  29. 29.
    V. Yardley, I. Povstugar, P. Choi, D. Raabe, A.B. Parsa, A. Kostka, C. Somsen, A. Dlouhy, K. Neuking, E.P. George, and G. Eggeler: Adv. Eng. Mater., 2016, vol. 18, pp. 1556-67.CrossRefGoogle Scholar
  30. 30.
    T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. Mccomb, E.P. George, M. Ghazisaeidi, and M.J. Mills: Acta Mater., 2016, vol. 110, pp. 352–63.CrossRefGoogle Scholar
  31. 31.
    J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd edn., Wiley, New York, 1968. pp. 317-318.Google Scholar
  32. 32.
    C.N. Jones, R.C. Reed, C.M.F. Rae, M. Karunaratne, C.J. Small, and R.W. Broomfield: Superalloys, 2000, Vol. 1, pp. 767–776.Google Scholar
  33. 33.
    T.M. Pollock and N. Rene: J. Propuls. Power, 2006, vol. 22, pp. 361–74.CrossRefGoogle Scholar
  34. 34.
    C.T. Sims: Superalloys, 1984, vol. 1, pp. 399–419.Google Scholar
  35. 35.
    R. Reed: The Superalloys: Fundamental and Applications, Cambridge University Press, New York, 2006. pp. 51-52.CrossRefGoogle Scholar
  36. 36.
    A.K. Jena and M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39.CrossRefGoogle Scholar
  37. 37.
    A. Suzuki, H. Inui, and T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 3, pp. 345–68.CrossRefGoogle Scholar
  38. 38.
    P.A. Carvalho, P.M. Bronsveld, B.J. Kooi, and J.T.M. De Hosson: Acta Mater., 2002, vol. 50, pp. 4511–26.CrossRefGoogle Scholar
  39. 39.
    A.K. Sinha: Trans Met. Soc. AIME., 1969, vol. 1969, pp. 1-5.Google Scholar
  40. 40.
    K.P. Gupta: Phase Diagram Evaluations: Section II., 2005, vol. 26, pp. 87–92.Google Scholar
  41. 41.
    L. Zhu, C. Wei, L. Jiang, Z. Jin, and J. Zhao: Intermetallics, 2017, vol. 93, pp. 20–9.CrossRefGoogle Scholar
  42. 42.
    P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, and B. Gault: Scr. Mater., 2018, vol. 145, pp. 76–80.CrossRefGoogle Scholar
  43. 43.
    E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman: J. Comput. Chem., 2007, vol. 28, pp. 899–908.CrossRefGoogle Scholar
  44. 44.
    G. Kresse and J. Furthmuller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.CrossRefGoogle Scholar
  45. 45.
    W. Kohn and L.J. Sham: Phys. Rev., 1965. vol. 140, pp. 1133-38.CrossRefGoogle Scholar
  46. 46.
    J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–8.CrossRefGoogle Scholar
  47. 47.
    B.D. Forbes, A.V. Martin, S.D. Findlay, A.J. D’Alfonso, and L.J. Allen: Phys. Rev., 2010, vol. 82, pp. 1–8.CrossRefGoogle Scholar
  48. 48.
    L.J. Allen, A.J. D’Alfonso, and S.D. Findlay: Ultramicroscopy., 2015, vol. 151, pp. 11-22.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • T. M. Smith
    • 1
  • B. D. Esser
    • 2
  • B. Good
    • 1
  • M. S. Hooshmand
    • 2
  • G. B. Viswanathan
    • 2
  • C. M. F. Rae
    • 3
  • M. Ghazisaeidi
    • 2
  • D. W. McComb
    • 2
  • M. J. Mills
    • 2
  1. 1.NASA Glenn Research CenterClevelandUSA
  2. 2.Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusUSA
  3. 3.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations