Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 3854–3864 | Cite as

γ′ Precipitation Study of a Co-Ni-Based Alloy

  • D. Locq
  • M. Martin
  • C. Ramusat
  • F. Fossard
  • M. Perrut
Topical Collection: Superalloys and Their Applications
  • 487 Downloads
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications

Abstract

A Co-Ni-based alloy strengthened by γ′-(L12) precipitates was utilized to investigate the precipitation evolution after various cooling rates and several aging conditions. In this study, the precipitate size and volume fraction have been studied via scanning electron microscopy and transmission electron microscopy. The influence of the precipitation evolution was measured via microhardness tests. The cooling rate study shows a more sluggish γ′ precipitation reaction compared to that observed in a Ni-based superalloy. Following a rapid cooling rate, the application of appropriate double aging treatments allows for the increase of the γ′ volume fraction as well as the control of the size and distribution of the precipitates. The highest hardness values reach those measured on supersolvus cast and wrought Ni-based superalloys. The observed γ′ precipitation behavior should have implications for the production, the heat treatment, the welding, or the additive manufacturing of this new class of high-temperature materials.

Notes

Acknowledgments

Thanks are due to our colleagues Théo Guérin, Agnès Bachelier-Locq, Nicolas Horezan, and Denis Boivin for their great experimental help.

References

  1. 1.
    P.R. Bhowal, E.F. Wright and E.L. Raymond: Metall. Trans. A, 1990, vol. 21A, pp. 1709-17.CrossRefGoogle Scholar
  2. 2.
    G. Raisson and J.H. Davidson (1990). Ffgjdiob sfsghrfigo nsljkglksf. In: E. Bachelet, R. Brunetaud, P. Esslinger, J. Ewald, I. Kvernes, Y. Lindblom, D.B. Meadowcroft, V. Regis, R.B. Scarlin, K. Schneider and R. Singer, eds. High Temperature Materials for Power Engineering. Kluwer Academic, Dordrecht, pp. 1405–16.Google Scholar
  3. 3.
    J. Mao, K-M.M. Chang, W. Yang, D.U. Furrer, K. Ray and S.P. Vaze: Mater. Sci. Eng., 2002, vol. A332, pp. 318-29.CrossRefGoogle Scholar
  4. 4.
    T.P. Gabb, J. Gayda, J. Telesman and A. Garg (2008) Dfsokgo fgvdgvdf. In: R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.R. Woodard, (eds) Superalloys FmnFsdfhn. TMS Publisher, Warrendale, pp. 121-30.Google Scholar
  5. 5.
    J-Y. Guédou, J-C. Lautridou and Y. Honnorat (1992) Ffmjgfdokbgdb dgvmkgvmfd. In: S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger and D.L. Klastrom (eds) Dijhfgvj dnfjdnf. TMS, Warrendale, pp. 267-76.Google Scholar
  6. 6.
    D. Locq, M. Marty and P. Caron: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R Bowman, K.A. Green, M. McLean, S.L. Olson and J.J. Schirra, eds., TMS, Warrendale, PA, USA, 2000, pp. 395-403Google Scholar
  7. 7.
    D. Locq, P. Caron, S. Raujol, F. Pettinari, A. Coujou and N. Clément (2004) Dibdgbdu afdskfjsd. In: K.A. Green, H. Harada, T.E. Howson, T.M. Pollock, R.C. Reed, J.J. Schirra and S. Walston (eds) Superalloys. TMS, Warrendale, pp. 179-87CrossRefGoogle Scholar
  8. 8.
    A. Devaux, A. Helstroffer, J. Cormier, P. Villechaise, J. Douin, M. Hantcherli and F. Pettinari-Sturmel: in 8th International Symposium on Superalloy 718 and Derivatives, E. Ott, A. Banik, J. Andersson, I. Dempster, T. Gabb, J. Groh, K. Heck, R. Helmink, X. Liu and A. Wusatowska-Sarnek, eds., Wiley, Hoboken, NJ, 2014, pp 485–99.Google Scholar
  9. 9.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida: Science, 2006, vol. 312, pp. 90-1.CrossRefGoogle Scholar
  10. 10.
    S.K. Makineni, B. Nithin and K. Chattopadhyay: Scr. Mater., 2015, vol. 98, pp. 36-9.CrossRefGoogle Scholar
  11. 11.
    S.K. Makineni, B. Nithin and K. Chattopadhyay: Acta Mater., 2015, vol. 85, pp. 85-94.CrossRefGoogle Scholar
  12. 12.
    S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee and K. Chattopadhyay: Acta Mater., 2015, vol. 97, pp. 29-40.CrossRefGoogle Scholar
  13. 13.
    S.K. Makineni, B. Nithin D. Palanisamy and K. Chattopadhyay: J. Mater. Sci., 2016, vol. 51, pp. 7843-60.CrossRefGoogle Scholar
  14. 14.
    B. Nithin, A. Samanta, S.K. Makineni, T. Alam, P. Pandey, A.K. Singh, R. Banerjee and K. Chattopadhyay: J. Mater. Sci., 2017, vol. 52, pp. 11036-47.CrossRefGoogle Scholar
  15. 15.
    C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe and M. Göken: Acta Mater., 2017, vol. 135, pp. 244-51.CrossRefGoogle Scholar
  16. 16.
    L. Zhang, X. Qu, M. Qin, Rafi-ud-din, X. He, Y. Liu and D. Li: Mater. Trans., 2012, vol. 53 (11), pp. 1922-28.CrossRefGoogle Scholar
  17. 17.
    S. Meher, S. Nag, J. Tiley , A. Goel and R. Banerjee: Acta Mater., 2013, vol. 61, pp. 4266-76.CrossRefGoogle Scholar
  18. 18.
    V.A. Vorontsov, J.S. Barnard, K.M. Rahman, H.-Y. Yan, P.A. Miggley and D. Dye: Acta Mater., 2016, vol. 120, pp. 14-23.CrossRefGoogle Scholar
  19. 19.
    D.J. Sauza, P.J. Bocchini, D.C. Dunand and D.N. Seidman: Acta Mater., 2016, vol. 117, pp. 135-45.CrossRefGoogle Scholar
  20. 20.
    P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand and D.N. Seidman: Mater. Sci. Eng. A, 2017, vol. 705, pp. 122-32.CrossRefGoogle Scholar
  21. 21.
    A Azzam, T. Philippe, A Hauet, F Danoix, D Locq, P Caron and D Blavette : Acta Mater., 2018, vol. 145, pp. 377-87CrossRefGoogle Scholar
  22. 22.
    K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida: Mater. Trans., 2008, vol. 49 (6), pp. 1474-79.CrossRefGoogle Scholar
  23. 23.
    G. Boittin, D. Locq, A. Rafray, P. Caron, P. Kanouté, F. Gallerneau and G. Cailletaud (2012) Sdd Fdfgs. In: E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella and J. Telesman (eds) Superalloys 2012. Wiley, Hoboken, NJ, pp. 167-76.CrossRefGoogle Scholar
  24. 24.
    G. Boittin, F. Gallerneau, D. Locq, P. Kanouté and G. Cailletaud: Tech. Mech., 2010, vol. 30(1-3), pp. 15-28Google Scholar
  25. 25.
    G. Boittin: Ph.D. Thesis, Mines-ParisTech, France, 2011.Google Scholar
  26. 26.
    M. Dahlén and L. Winberg: Met. Sci., 1979, March–April, pp. 163–69.Google Scholar
  27. 27.
    J.R. May, M.C. Hardy, M.R. Bache and D.D. Kaylor: Adv. Mater. Res., 2011, vol. 278, pp. 265-270.CrossRefGoogle Scholar
  28. 28.
    F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang and Q. Feng: Mater. Lett., 2013, vol. 112, pp. 215-18.CrossRefGoogle Scholar
  29. 29.
    J. Gayda, P. Kantzos and J. Miller: Pratical Failure Analysis, 2003, vol. 3 (1), pp. 55-9.CrossRefGoogle Scholar
  30. 30.
    W.M. Kane, U. Krupp, T. Jacobs and C.J. McMahon: Mater. Sci. Eng. A, 2005, vol. 402, pp.42-6.CrossRefGoogle Scholar
  31. 31.
    Chester T. Sims, Norman S. Stoloff and William C. Hagel: Superalloys II, John Wiley & Sons, New-York, NY, 1987, pp. 495-516.Google Scholar
  32. 32.
    M.B. Henderson, D. Arrell, M. Heobel, R. Larsson and G. Marchant: Sci. Technol. Weld. Joining, 2004, vol. 9 (1), pp. 13-21.CrossRefGoogle Scholar
  33. 33.
    L.N. Carter, C. Martin, P.J. Withers and M.M. Attallah: J. Alloys Compd., 2014, vol. 615, pp. 338-47.CrossRefGoogle Scholar
  34. 34.
    M.M. Attallah, R. Jennings, X.Q. Wang and L.N. Carter: MRS Bull., 2016, Vol. 41 (10), pp. 758-64.CrossRefGoogle Scholar
  35. 35.
    M.D. Rowe: Welding research, supplement to Weld J., 2006, pp. 27-s–34-s.Google Scholar
  36. 36.
    Y. Danis, C. Arvieu, E. Lacoste, T. Larrouy and J.-M. Quessinet: Mater. Des., 2010, vol. 31, pp. 402-16.CrossRefGoogle Scholar
  37. 37.
    A. Lingenfelter (1989) In: Superalloy 718: metallurgy and applications (1989), E.A. Loria, eds., TMS, Warrendale, PA, pp. 673–83.CrossRefGoogle Scholar
  38. 38.
    R. Thamburaj, W. Wallace and J.A. Goldak: Int. Met. Rev., 1983, vol. 28 (1), pp. 1-22.CrossRefGoogle Scholar
  39. 39.
    A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet and P. Héritier: Mater. Sci. Eng. A, 2008, vol. 486, pp. 117-22.CrossRefGoogle Scholar
  40. 40.
    S. Neumeier, L.P. Freund and M. Göken: Scr. Mater., 2015, vol. 109, pp. 104-07.CrossRefGoogle Scholar
  41. 41.
    D.J. Novotnak, G.E. Maurer, L.W. Lherbier and J.F. Radavich (2008) Fssdgfsgfbg cbrf dff. In: R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.R. Woodard, eds. Superalloys fsdfsv fcafdfd. TMS, Warrendale, PA, pp. 339–43Google Scholar
  42. 42.
    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40 (1), pp. 1-30.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • D. Locq
    • 1
  • M. Martin
    • 1
  • C. Ramusat
    • 1
  • F. Fossard
    • 2
  • M. Perrut
    • 1
  1. 1.ONERA – The French Aerospace LabChâtillonFrance
  2. 2.Laboratoire d’Etude des MicrostructuresCNRS/ONERAChâtillonFrance

Personalised recommendations