Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 3885–3895 | Cite as

Synchrotron In-Situ Aging Study and Correlations to the γ′ Phase Instabilities in a High-Refractory Content γ-γ′ Ni-Base Superalloy

  • Stoichko Antonov
  • Eugene Sun
  • Sammy Tin
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


Detailed ex-situ electron microscopy and atom probe tomography (APT) were combined with in-situ synchrotron diffraction to systematically quantify the chemical, morphological, and lattice instabilities that occur during aging of a polycrystalline high-refractory content Ni-base superalloy. The morphological changes and splitting phenomenon associated with the secondary γ′ precipitates were related to a combination of discrete chemical composition variations at the secondary γ′/γ interfaces and additional chemical energy arising from γ precipitates that form within the secondary γ′ particles. The compositional phase inhomogeneities led to the precipitation of finely dispersed tertiary γ′ particles within the γ matrix and secondary γ particles within the secondary γ′ precipitates, which, along with surface grooving of the secondary γ′ particles, likely due to a spike in the lattice misfit at the particle interfaces, contributed to the splitting of the precipitates during aging.



The financial support for this investigation was provided by Rolls-Royce Corporation. The authors thank Saul Lapidus for the help with the synchrotron setup and Dieter Isheim for the useful discussion on the atom probe data. Additionally, use of the Advanced Photon Source at Argonne National Laboratory was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


  1. 1.
    C.T. Sims and W.C. Hagel: Superalloys: Science & Technology of Materials, John Wiley & Sons, Inc., Hoboken, NJ, 1973.Google Scholar
  2. 2.
    R.F. Decker and C.T. Sims: The Metallurgy of Nickel-Base Superalloys, Paul D. Merica Research Laboratory, 1972.Google Scholar
  3. 3.
    R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, S. Karthikeyan, J. Li, and M.J. Mills: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 25–32.CrossRefGoogle Scholar
  4. 4.
    D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clement: Superalloys 2004 (10th Int. Symp.), TMS, Warrendale, PA, 2004, pp. 179–87.Google Scholar
  5. 5.
    T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.CrossRefGoogle Scholar
  6. 6.
    D. Furrer and H. Fecht: JOM, 1999, vol. 51, pp. 14–17.CrossRefGoogle Scholar
  7. 7.
    R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, and M.J. Mills: Superalloys 2008 (11th Int. Symp.), TMS, Warrendale, PA, 2008, pp. 377–85.Google Scholar
  8. 8.
    R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, United Kingdom, 2006.CrossRefGoogle Scholar
  9. 9.
    G.W. Meetham: Met. Technol., 1984, vol. 11, pp. 414–18.CrossRefGoogle Scholar
  10. 10.
    M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd ed., ASM International, Materials Park, OH, 2002.Google Scholar
  11. 11.
    S. Antonov, M. Detrois, R.C. Helmink, and S. Tin: J. Alloys Compd., 2015, vol. 626, pp. 76–86.CrossRefGoogle Scholar
  12. 12.
    T.M. Pollock and R.D. Field: Dislocations in Solids, 2002, vol. 11, pp. 547–618.CrossRefGoogle Scholar
  13. 13.
    K.V. Vamsi and S. Karthikeyan: MATEC Web Conf., 2014, vol. 14, p. 11005.CrossRefGoogle Scholar
  14. 14.
    R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1588–1603.CrossRefGoogle Scholar
  15. 15.
    H.A. Roth, C.L. Davis, and R.C. Thomson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1329–35.CrossRefGoogle Scholar
  16. 16.
    S. Antonov, M. Detrois, D. Isheim, D.N. Seidman, R.C. Helmink, R.L. Goetz, E. Sun, and S. Tin: Mater. Des., 2015, vol. 86, pp. 649–55.CrossRefGoogle Scholar
  17. 17.
    P.M. Mignanelli, N.G. Jones, K.M. Perkins, M.C. Hardy, and H.J. Stone: Mater. Sci. Eng. A, 2015, vol. 621, pp. 265–71.CrossRefGoogle Scholar
  18. 18.
    M. Detrois, R.C. Helmink, and S. Tin: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5332–43.CrossRefGoogle Scholar
  19. 19.
    M. Detrois, S. Antonov, R.C. Helmink, and S. Tin: JOM, 2014, vol. 66, pp. 2478–85.CrossRefGoogle Scholar
  20. 20.
    S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Mater. Sci. Eng. A, 2017, vol. 687, pp. 232–40.CrossRefGoogle Scholar
  21. 21.
    W. Ostwald: Z. Phys. Chemie, 1901, vol. 37, p. 385.Google Scholar
  22. 22.
    I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.CrossRefGoogle Scholar
  23. 23.
    C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.Google Scholar
  24. 24.
    A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61–71.CrossRefGoogle Scholar
  25. 25.
    P. Cha, D. Yeon, and S. Chung: Scripta Mater., 2005, vol. 52, pp. 1241–45.CrossRefGoogle Scholar
  26. 26.
    M. Doi, and T. Miyazaki: Superalloys 1984 (5th Int. Symp.), TMS, Warrendale, PA, 1984, vol. 67, pp. 543–52.Google Scholar
  27. 27.
    M. Doi, T. Miyazaki, and T. Wakatsuki: Mater. Sci. Eng., 1984, vol. 67, pp. 247–53.CrossRefGoogle Scholar
  28. 28.
    M. Doi, T. Miyazaki, and T. Wakatsuki: Mater. Sci. Eng., 1985, vol. 74, pp. 139–45.CrossRefGoogle Scholar
  29. 29.
    T. Miyazaki, H. Imamura, and T. Kozakai: Mater. Sci. Eng., 1982, vol. 54, pp. 9–15.CrossRefGoogle Scholar
  30. 30.
    F. Vogel, N. Wanderka, Z. Balogh, M. Ibrahim, P. Stender, G. Schmitz, and J. Banhart: Nat. Commun., 2013, vol. 4, p. 2955.CrossRefGoogle Scholar
  31. 31.
    M. Doi, D. Miki, T. Moritani, and T. Kozakai: Superalloys 2004 (10th Int. Symp.), TMS, Warrendale, PA, 2004, pp. 109–14.Google Scholar
  32. 32.
    S. Behrouzghaemi and R.J. Mitchell: Mater. Sci. Eng. A, 2008, vol. 498, pp. 266–71.CrossRefGoogle Scholar
  33. 33.
    R.J. Mitchell, M. Preuss, M.C. Hardy, and S. Tin: Mater. Sci. Eng. A, 2006, vol. 423, pp. 282–91.CrossRefGoogle Scholar
  34. 34.
    R.J. Mitchell, M. Preuss, S.Tin, and M.C. Hardy: Mater. Sci. Eng. A, 2008, vol. 473, pp. 158–65.CrossRefGoogle Scholar
  35. 35.
    R.J. Mitchell and M. Preuss: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 615–27.CrossRefGoogle Scholar
  36. 36.
    S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Scripta Mater., 2017, vol. 138, pp. 35–38.CrossRefGoogle Scholar
  37. 37.
    S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, E. Sun, and S. Tin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 729–39.CrossRefGoogle Scholar
  38. 38.
    S. Antonov, W. Chen, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, E. Sun, and S. Tin: Metall. Mater. Trans. A, 2018, vol. 49A, 0000–00.CrossRefGoogle Scholar
  39. 39.
    P.L. Lee, D. Shu, M. Ramanathan, C. Preissner, J. Wang, M.A. Beno, R.B. Von Dreele, L. Ribaud, C. Kurtz, S.M. Antao, X. Jiao, and B.H. Toby: J. Synchrotron Radiat., 2008, vol. 15, pp. 427–32.CrossRefGoogle Scholar
  40. 40.
    S. Antonov, D. Isheim, D.N. Seidman, E. Sun, R.C. Helmink, and S. Tin: Proc. Int. Symp. on Superalloys, 2016, vol. 2016.Google Scholar
  41. 41.
    Y. Mishima, S. Ochiai, and T. Suzuki: Acta Metall., 1985, vol. 33, pp. 1161–69.CrossRefGoogle Scholar
  42. 42.
    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.CrossRefGoogle Scholar
  43. 43.
    E. Nembach and G. Neite: Prog. Mater. Sci., 1985, vol. 29(3), pp. 177–319. Scholar
  44. 44.
    N. Saunders, A.P. Miodownik, and J.-P. Schillé: J. Mater. Sci., 2004, vol. 39, pp. 7237–43.CrossRefGoogle Scholar
  45. 45.
    D.M. Collins, D.J. Crudden, E. Alabort, T. Connolley, and R.C. Reed: Acta Mater., 2015, vol. 94, pp. 244–56.CrossRefGoogle Scholar
  46. 46.
    A.G. Khachaturyan and V.M. Airapetyan: Phys. Status Solidi, 1974, vol. 26, pp. 61–70.CrossRefGoogle Scholar
  47. 47.
    A.G. Khachaturyan, S.V. Semenovskaya, and J.W. Morris: Acta Metall., 1988, vol. 36, pp. 1563–72.CrossRefGoogle Scholar
  48. 48.
    A. Hazotte, T. Grosdidier, and S. Denis: Scripta Mater., 1996, vol. 34, pp. 601–08.CrossRefGoogle Scholar
  49. 49.
    Y. Chen, R. Prasath Babu, T.J.A. Slater, M. Bai, R. Mitchell, O. Ciuca, M. Preuss, and S.J. Haigh: Acta Mater., 2016, vol. 110, pp. 295–305.CrossRefGoogle Scholar
  50. 50.
    D.M. Collins, L. Yan, E.A. Marquis, L.D. Connor, J.J. Ciardiello, A.D. Evans, and H.J. Stone: Acta Mater., 2013, vol. 61, pp. 7791–1804.CrossRefGoogle Scholar
  51. 51.
    M.T. Lapington, D.J. Crudden, R.C. Reed, M.P. Moody, and P.A.J. Bagot: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2302–10. Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Rolls-Royce CorporationIndianapolisUSA
  3. 3.Department of Mechanical, Materials, and Aerospace EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations