Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4126–4133 | Cite as

A Lattice-Misfit-Dependent Damage Model for Non-linear Damage Accumulations Under Monotonous Creep in Single Crystal Superalloys

  • J.-B. le Graverend
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ′ phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.



The simulations were performed using the computing resources from Laboratory for Molecular Simulation (LMS) and High Performance Research Computing (HPRC) at Texas A&M University.


  1. 1.
    Caron P, Khan T. Mater. Sci. Eng. 1983;61(2):173-84.CrossRefGoogle Scholar
  2. 2.
    Reed RC. The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge (2006).CrossRefGoogle Scholar
  3. 3.
    Pollock TM, Argon AS. Acta Metall. Mater. 1994;42(6):1859-74.CrossRefGoogle Scholar
  4. 4.
    Grose D, Ansell G. Metallurgical & Materials Transactions A. 1981;12:1631-45.CrossRefGoogle Scholar
  5. 5.
    Nathal MV, Mackay RA, Garlick RG. Mater. Sci. Eng.. 1985;75(1):195-205.CrossRefGoogle Scholar
  6. 6.
    Belle D, Basti P. Philos. Mag. B 1991;64(2):143-52.CrossRefGoogle Scholar
  7. 7.
    Müller L, Link T, Feller-Kniepmeier M. Scripta Metall. Mater. 1992;26(8):1297-302.CrossRefGoogle Scholar
  8. 8.
    Diologent F, Caron P, d’Almeida T, Jacques A, Bastie P. Nucl. Instrum. Methods Phys. Res. B 2003;200:346-51.CrossRefGoogle Scholar
  9. 9.
    Jacques A, Bastie P. Philos. Mag. 2003;83(26):3005-27.CrossRefGoogle Scholar
  10. 10.
    Jacques A, Diologent F, Bastie P. Mater. Sci. Eng. A 2004;387–389:944-9.CrossRefGoogle Scholar
  11. 11.
    Dirand L, Cormier J, Jacques A, Chateau-Cornu J-P, Schenk T, Ferry O, et al. Mater. Charact. 2013;77:32-46.CrossRefGoogle Scholar
  12. 12.
    le Graverend J-B, Dirand L, Jacques A, Cormier J, Ferry O, Schenk T, et al. Metall. Mater. Trans. A 2012;43(11):3946-51.CrossRefGoogle Scholar
  13. 13.
    le Graverend J-B, Jacques A, Cormier J, Ferry O, Schenk T, Mendez J. Acta Mater. 2015;84(0):65-79.CrossRefGoogle Scholar
  14. 14.
    le Graverend J-B, Cormier J, Gallerneau F, Kruch S, Mendez J. Mater Design. 2014;56(0):990-7.CrossRefGoogle Scholar
  15. 15.
    Serin K, Göbenli G, Eggeler G. Materials Science & Engineering A. 2004;387-389:133-7.CrossRefGoogle Scholar
  16. 16.
    Cormier J, Milhet X, Mendez J. Acta Mater. 2007;55(18):6250-9.CrossRefGoogle Scholar
  17. 17.
    Cormier J, Milhet X, Mendez J. Mater. Sci. Eng. A 2008;483-484:594-7.CrossRefGoogle Scholar
  18. 18.
    Raffaitin A, Monceau D, Crabos F, Andrieu E. Scripta Mater. 2007;56:277-80.CrossRefGoogle Scholar
  19. 19.
    Viguier B, Touratier F, Andrieu E. Philos. Mag. 2011;91(35):4427-46.CrossRefGoogle Scholar
  20. 20.
    le Graverend J-B, Cormier J, Gallerneau F, Villechaise P, Kruch S, Mendez J. Int. J. Plast. 2014;59(0):55-83.CrossRefGoogle Scholar
  21. 21.
    Méric L, Poubanne P, Cailletaud G. J. Eng. Mater. Technol. 1991;113:162-70.CrossRefGoogle Scholar
  22. 22.
    Asaro RJ. Adv. App. Mech. 1983;23:1-115.CrossRefGoogle Scholar
  23. 23.
    Hutchinson JW. Proc. Royal Soc. London A 1970;319(1537):247-72.CrossRefGoogle Scholar
  24. 24.
    Kocks UF. Metall. Mater. Trans. 1970;1(5):1121-43.CrossRefGoogle Scholar
  25. 25.
    Cormier J, Cailletaud G. Mater. Sci. Eng. A 2010;527(23):6300-12.CrossRefGoogle Scholar
  26. 26.
    Ghighi J, Cormier J, Ostoja-Kuczynski E, Mendez J, Cailletaud G, Azzouz F. Technishe Mechanik. 2012;32(2-5):205-20.Google Scholar
  27. 27.
    le Graverend J.-B. Int. J. Dam. Mech. 2018.Google Scholar
  28. 28.
    le Graverend J-B, Cormier J, Kruch S, Gallerneau F, Mendez J. Metall. Mater. Trans. A 2012;43(11):3988-97.CrossRefGoogle Scholar
  29. 29.
    Aifantis EC. J. Eng. Mater. Technol. 1984;106(4):326-30.CrossRefGoogle Scholar
  30. 30.
    Fribourg G, Bréchet Y, Deschamps A, Simar A. Acta Mater. 2011;59(9):3621-35.CrossRefGoogle Scholar
  31. 31.
    Moosbrugger JC, McDowell DL. J. Mech. Phys. Solids. 1990;38(5):627-56.CrossRefGoogle Scholar
  32. 32.
    Hayhurst DR. J. Mech. Phys. Solids. 1972;20:381-90.CrossRefGoogle Scholar
  33. 33.
    Lesne PM, Savalle S. La Recherche Aerospatiale. 1987(2):33-47.Google Scholar
  34. 34.
    Jacques A, Diologent F, Caron P, Bastie P. Mater. Sci. Eng. A 2008;483–484:568-71.CrossRefGoogle Scholar
  35. 35.
    Arnoux M: PhD dissertation, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (France); 2009.Google Scholar
  36. 36.
    le Graverend J.-B: PhD dissertation, Ecole Nationale Superieure de Mecanique d’Aerotechnique (France); 2013. ISAE-ENSMA/ONERA (France); 2013.Google Scholar
  37. 37.
    Cormier J, Milhet X, Champion J-L, Mendez J. Adv. Eng. Mater. 2008;10(1-2):56-61.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Aerospace Engineering and Materials Science Engineering DepartmentsTexas A&M UniversityCollege StationUSA

Personalised recommendations