Skip to main content
Log in

Oxidation Resistance of Highly Porous Fe-Al Foams Prepared by Thermal Explosion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Open-cell Fe-Al intermetallic foams were successfully prepared by a simple and energy-saving thermal explosion (TE) process. The effects of the Fe/Al molar ratio (Fe-(40–50) at. pct Al) and thermal treatment temperature on the TE temperature profile, phase composition, pore characteristics, and oxidation resistance of the prepared foams were investigated. The results showed that the Al content significantly influenced the ignition (Tig) and combustion (Tc) temperatures of the TE process; in particular, as the Al content decreased, Tig increased gradually from 623 °C to 636 °C and Tc decreased from 1059 °C to 981 °C. FeAl was identified as the dominant phase in the thermally treated foams. The Fe-Al intermetallic foams displayed an open porosity of 60 vol pct, with pores connected with each other to form an open pore structure. The formation of the pores was attributed to the expansion of interparticle pores in the pressed body during the TE reaction. X-ray photoelectron spectroscopy analysis of the Fe-50Al foam showed that the Al 2p and O 1s binding energies were 74.5 eV and at 531.4 eV, respectively. The formation of a surface alumina layer in the early stages of the oxidation process resulted in the parabolic oxidation rate law, and the Fe-50Al foams exhibited an excellent resistance to oxidation at 650 °C in air. These results suggest that the synthesized Fe-Al foams represent promising materials for applications involving an oxidizing environment and high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Banhart: Prog. Mater Sci., 2001, vol. 46, pp. 559-632.

    Article  Google Scholar 

  2. Y. Jiang, Y.H. He and C.T. Liu: Intermetallics, 2018, vol. 93, pp. 217-26.

    Article  Google Scholar 

  3. M.E Davis: Nature, 2002, vol. 417, pp. 813–21.

  4. X.Y. Jiao, X.R. Ren, X.H. Wang, S.G. Wang, P.Z. Peng and J.Z. Wang: Intermetallics, 2018, vol. 95, pp. 144–9.

    Article  Google Scholar 

  5. G.R. Li, Q.F. Ke, Z.S. Zhang, C.R. Dawa, P. Liu, G.K. Liu and Y.X. Tong: Chem. Mater., 2007, vol. 19, pp. 2283-87.

    Article  Google Scholar 

  6. W.W. Zeng, S.H. Hou, X.J. Ding, D.L. Duan, S. Li and S.H. Zhang: Acta Metall. Sin., 2017, vol 10, pp. 1-8.

    Google Scholar 

  7. K. Karczewski, W.J. Stępniowski, P. Kaczor and S. Jóźwiak: Materials, 2015, vol. 8, pp. 2217-26.

    Article  Google Scholar 

  8. X.P. Cai, Y.N. Liu, P.Z. Peng, X.Y. Jiao, L.Q. Zhang and J.Z. Wang: J. Alloys Compd., 2018, vol. 732, pp. 443-7.

    Article  Google Scholar 

  9. D.V. Dudina, M.A. Legan, N.V. Fedorova, A.N. Novoselov, A.G. Anisimov and M.A. Esikov: Mater. Sci. Eng. A, 2017, vol. 695, pp. 309-14.

    Article  Google Scholar 

  10. D. Henkel: Adv. Mater. Process., 2011, vol. 169, pp. 44-46.

    Google Scholar 

  11. H.Y. Gao, Y.H. He, P.Z. Shen, Y. Jiang and C.T. Liu: Adv. Powder Technol., 2015, vol. 26, pp. 882-86.

    Article  Google Scholar 

  12. G. Chen, P. Cao, Y.H. He, P.Z. Shen and H.Y. Gao: J. Mater. Sci., 2012, vol. 47, pp. 1244-50.

    Article  Google Scholar 

  13. M.M. Verdian: Vacuum, 2016, vol. 132, pp. 5-9.

    Article  Google Scholar 

  14. K. Karczewski, W.J. Stępniowski and S. Jóźwiak: Mater. Lett., 2016, vol. 178, pp. 268-71.

    Article  Google Scholar 

  15. M. Łazińska, T. Durejko, S. Lipiński, J. Polkowski, T. Czujko and R.A. Varin: Mater. Sci. Eng. A, 2015, vol. 636, pp. 407-14.

    Article  Google Scholar 

  16. H.Y. Gao, Y.H. He, P.Z. Shen, J. Zou, N.P. Xu, Y. Jiang, B.Y. Huang and C.T. Liu: Intermetallics, 2009, vol. 17, pp. 1041-46.

    Article  Google Scholar 

  17. K. Karczewski, W.J. Stępniowski, M. Chojnacki and S. Jóźwiak: Mater. Lett., 2015, vol. 164, pp. 32-34.

    Article  Google Scholar 

  18. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadley: Metal Foams: A Design Guide, Elsevier, Netherlands, 2000.

    Google Scholar 

  19. A. Varma and A.S. Mukasyan: Korean J. Chem. Eng., 2004, vol. 21, pp. 527-36.

    Article  Google Scholar 

  20. H.B. Zhang, W. Xie, H.Y. Gao, W.J. Shen and Y.H. He: J. Alloys Compd., 2018, vol. 735, pp. 1435-38.

    Article  Google Scholar 

  21. J.J. Moore and H.J. Feng: Prog. Mater Sci., 1995, vol. 39, pp. 243-73.

    Article  Google Scholar 

  22. J. Subrahmanyam and M. Vijayakumar: J. Mater. Sci., 1992, vol. 27, pp. 6249-73.

    Article  Google Scholar 

  23. A. Biswas: Acta Mater., 2005, vol. 53, pp. 1415-25.

    Article  Google Scholar 

  24. Y. Khoptiar and I. Gotman: Mater. Lett., 2002, vol. 57, pp. 72-76.

    Article  Google Scholar 

  25. M.L. Busurina, L.M. Umarov, I.D. Kovalev, N.V. Sachkova, S.M. Busurin, S.G. Vadchenko and A.E. Sychev: Combust Explo Shock+, 2016, vol. 52, pp. 659–64.

  26. Y. Jiang, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang and C.T. Liu: Intermetallics, 2008, vol. 16, pp. 327-32.

    Article  Google Scholar 

  27. J. Yang, G. Shi, J. Bei, S.G. Wang, Y.L. Gao, Q.X. Shang, G.H. Yang and W.J. Wang: J. Biomed. Mater. Res., 2002, vol. 62, pp. 438-46.

    Article  Google Scholar 

  28. Y.H. Wang, M. Song, S. Ni and Y. Xue: Mater. Des., 2014, vol. 56, pp. 405-8.

    Article  Google Scholar 

  29. H.Z. Kang and C.T. Hu: Mater. Chem. Phys., 2004, vol. 88, pp. 264-72.

    Article  Google Scholar 

  30. S. Hirose, T. Itoh, M. Makita, S. Fujii, S. Arai, K. Sasaki and H. Saka: Intermetallics, 2003, vol. 11, pp. 633-42.

    Article  Google Scholar 

  31. H.Z. Kang, S. Lee and C.T. Hu: Mater. Sci. Eng. A, 2005, vol. 398, pp. 360-66.

    Article  Google Scholar 

  32. J.L. Jordan and S.C. Deevi: Intermetallics, 2003, vol. 11, pp. 507-28.

    Article  Google Scholar 

  33. X.Y. Jiao, X.H. Wang, P.Z. Peng, Y.N. Liu, L.Q. Zhang and F. Akhtar: Acta Metall. Sin. (Engl. Lett.), 2018, vol. 31, pp. 440–8.

  34. A. Biswas, S.K. Roy, K.R. Gurumurthy, N. Prabhu and S. Banerjee: Acta Mater., 2002, vol. 50, pp. 757-73.

    Article  Google Scholar 

  35. Y.X. Li, P.K. Bai, B. Liu and J.H. Wang: Int. J. Refract. Met. Hard Mater., 2012, vol. 34, pp. 53-56.

    Article  Google Scholar 

  36. Y.H. Liang, Q. Zhao, Z.W. Han, Z.H. Zhang, X.J. Li and L.Q. Ren: Corros. Sci., 2015, vol. 93, pp. 283–92.

    Article  Google Scholar 

  37. M. Eslamloo-Grami and Z.A. Munir: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2222-27.

    Article  Google Scholar 

  38. R. Prescott and M.J. Graham: Oxid. Met., 1992, vol. 38, pp. 73-87.

    Article  Google Scholar 

  39. H.J. Grabke: Intermetallics. 1999, vol. 7, pp. 1153-58.

    Article  Google Scholar 

  40. S. Pintea, V. Rednic, P. Mărginean, N. Aldea, T.D. Hu, Z.H. Wu, M. Neumann and F. Matei: Superlattices Microstruct., 2009, vol. 46, pp. 130-36.

    Article  Google Scholar 

  41. P.H. Bolt, E.T. Grotenhuis, J.W. Geus and F.H.P.M. Habraken: Surf. Sci., 1995, vol. 329, pp. 227-40.

    Article  Google Scholar 

  42. T. Yamashita and P. Hayes: Appl. Surf. Sci., 2008, vol. 254, pp. 2441-49.

    Article  Google Scholar 

  43. J.V.D. Brand, W.G. Sloof, H. Terryn and J.H.W. Wit: Surf. Interface Anal., 2010, vol. 36, pp. 81-88.

    Article  Google Scholar 

  44. T. Gougousi, D. Barua, E.D. Young and G.N. Parsons: Chem. Mater., 2005, vol. 17, pp. 5093-5100.

    Article  Google Scholar 

  45. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger and N.S. McIntyre: Surf. Interface Anal., 2004, vol. 36, pp. 1564-74.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Fundamental Research Funds for the Central Universities (2017XKQY006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Wang.

Additional information

Manuscript submitted November 15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Liu, Y., Wang, X. et al. Oxidation Resistance of Highly Porous Fe-Al Foams Prepared by Thermal Explosion. Metall Mater Trans A 49, 3683–3691 (2018). https://doi.org/10.1007/s11661-018-4680-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4680-6

Navigation