Skip to main content
Log in

Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano–Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.H. Liu, M.R. Wen, Z. Li, W.Q. Liu, P. Yan, and C.Y. Wang: Mater. Des., 2017, vol. 130, pp. 157–165.

    Article  Google Scholar 

  2. X. Xiong, P. Dai, D. Quan, Z. Wang, Q. Zhang, and Z. Yue: Mater. Des., 2015, vol. 86, pp. 482–486.

    Article  Google Scholar 

  3. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge: Cambridge University Press, 2006.

    Book  Google Scholar 

  4. W.R. Cannon, and O.D. Sherby: Metall. Trans., 1970, vol. 1, pp. 1030–1032.

    Google Scholar 

  5. C.L. Zacherl: A computational investigation of the effect of alloying elements on the thermodynamic and diffusion properties of fcc nickel alloys, with application to the creep rate of dilute nickel-X alloys, Doctoral thesis, Pennsylvania State University, 2012.

  6. W.Y. Gong, L.J. Zhang, D.Z. Yao, and C.G. Zhou: Scripta Mater., 2009, vol. 61, pp. 100–03.

    Article  Google Scholar 

  7. M.J.H. Van Dal, M.C.L.P. Pleumeekers, A.A. Kodentsov, and F.J.J. Van Loo: Acta Mater., 2000, vol. 48, pp. 385–396.

    Article  Google Scholar 

  8. R.A. Hobbsa, M.S.A. Karunaratne, S. Tina, R.C. Reed, and C.M.F. Rae: Mater. Sci. Eng. A, 2007, vol. 460-461, pp. 587–594.

    Article  Google Scholar 

  9. M.S.A. Karunaratne, and R.C. Reed: Acta Mater., 2003, vol. 51, pp. 2905–2919.

    Article  Google Scholar 

  10. M.S.A. Karunaratne, P. Carter, and R.C. Reed: Mater. Sci. Eng. A, 2000, vol. 281, pp. 229–233.

    Article  Google Scholar 

  11. X.M. Zhang, H.Q. Deng, S.F. Xiao, Z. Zhang, J.F. Tang, L. Deng, and W.Y. Hu: J. Alloys Compd., 2014, vol. 588, pp. 163–169.

    Article  Google Scholar 

  12. A. Janotti, M. Krčmar, C.L. Fu, and R.C. Reed: Phys. Rev. Lett., 2004, vol. 92, art. no. 085901.

  13. J. Chen, J.K. Xiao, L.J. Zhang, and Y. Du: J. Alloys Compd., 2016, vol. 657, pp. 457– 463.

    Article  Google Scholar 

  14. M. S. A. Karunaratne, P. Carter, and R. C. Reed: Acta Mater., 2001, vol. 49, pp. 861-875.

    Article  Google Scholar 

  15. Y. Wang, N.Q. Zhu, H. Wang, and X.G. Lu: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 943–947.

    Google Scholar 

  16. T. Yamamoto, T. Takashima, and K. Nishida: Trans. Jpn. Inst. Met., 1980, vol. 21, pp. 601–608.

    Article  Google Scholar 

  17. G.C. Xu, Y.J. Liu, and Z.T. Kang: J. Alloys Compd., 2017, vol. 709, pp. 272–276.

    Article  Google Scholar 

  18. S.Y. Wen, Y. Tang, J. Zhong, L.J. Zhang, Y. Du, and F. Zheng: J. Mater. Res., 2017, vol. 32, pp. 2188–2201.

    Article  Google Scholar 

  19. M. Hattori, N. Goto, Y. Murata, T. Koyama, and M. Morinaga: Mater. Trans., 2006, vol. 47, pp. 331–334.

    Article  Google Scholar 

  20. J. Chen, and L.J Zhang: CALPHAD, 2017, vol. 60, pp. 106–15.

  21. J. Chen, L.J Zhang, J. Zhong, W.M. Chen, and Y. Du: J. Alloys Compd., 2016, vol. 688, pp. 320–328.

    Article  Google Scholar 

  22. S. Hayashi, D.J. Sordelet, L.R. Walker, and B. Gleeson: Mater. Trans., 2008, vol. 49, pp. 1550–1557.

    Article  Google Scholar 

  23. Q. Zeng, S.W. Ma, Y.R. Zheng, S.Z. Liu, and T. Zhai: J. Alloys Compd., 2009, vol. 480, pp. 987–990.

    Article  Google Scholar 

  24. E. Mabruri, M. Hattori, K. Hasuike, T. Kunieda, Y. Murata, and M. Morinaga: Mater. Trans., 2006, vol. 47, pp. 1408–1411.

    Article  Google Scholar 

  25. W.M. Chen, L.J. Zhang, Y. Du, C.Y. Tang, and B.Y. Huang: Scripta Mater., 2014, vol. 90-91, pp. 53–56 .

    Article  Google Scholar 

  26. W.M. Chen, J. Zhong, and L.J. Zhang: MRS Commun., 2016, vol. 6, pp. 295– 300.

    Article  Google Scholar 

  27. HitDIC software: https://hitdic.com/. Accessed 21 December 2017.

  28. J. Zhong, W. Chen, and L. Zhang: CALPHAD, 2017, vol. 60, pp. 177– 190.

    Article  Google Scholar 

  29. M.A. Dayananda: Metall. Trans. A, 1983, vol. 14A, pp. 1851-1858.

    Article  Google Scholar 

  30. W. Huang, and Y.A. Chang: Mater. Sci. Eng. A, 1999, vol. 259, pp. 110–119.

    Article  Google Scholar 

  31. L. Onsager: Ann. N. Y, Acad. Sci., 1945, vol. 46, pp. 241–65.

  32. J. Léchelle, S. Noyau, L. Aufore, A. Arredondo, and E. Audubert: Diffus. Fundam. Org., 2012, vol. 17, pp. 1–39.

    Google Scholar 

  33. J.S. Kirkaldy, J.E. Lane, and G.R. Masson: Can. J. Phys., 1963, vol. 41, pp. 2174–2186.

    Article  Google Scholar 

  34. J.S. Kirkaldy, and D.J. Young: Diffusion in the Condensed State, Institute of Metals, London, 1987.

    Google Scholar 

  35. R.A. Swalin, and A. Martin: J. Metals, 1956, vol. 8, pp. 567–572.

    Google Scholar 

  36. A. Volek, F. Pyczak, R.F. Singer, and H. Mughrabi: Scripta Mater., 2005, vol. 52, pp. 141–145.

    Article  Google Scholar 

  37. C.C. Jia, K. Ishida, and T. Nishizawa: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 473–485.

    Article  Google Scholar 

  38. T. Yokokawa, M. Osawa, K. Nishida, T. Kobayashi, Y. Koizumi, and H. Harada: Scripta Mater., 2003, vol. 49, pp. 1041–1046.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. 51474239) and the Hunan Provincial Science and Technology Program of China (Grant No. 2017RS3002)—Huxiang Youth Talent Plan is acknowledged. Lijun Zhang acknowledges that the project was supported by the State Key Laboratory of Powder Metallurgy Foundation, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Additional information

Manuscript submitted August 1, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11661_2018_4669_MOESM1_ESM.xls

Supplementary material 1 (XLS 898 kb) Supplemental material A1 Concentration profiles and interdiffusion coefficients evaluated by the numerical inverse method in fcc Ni–Al–X (X=Re, Os, and Ir) system.

11661_2018_4669_MOESM2_ESM.xlsx

Supplementary material 2 (XLSX 169 kb) Supplemental material A2 Evaluated mobility parameters adopted in the present numerical inverse method in fcc Ni–Al–X (X=Re, Os, and Ir) system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, L. & Lu, XG. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries. Metall Mater Trans A 49, 2999–3010 (2018). https://doi.org/10.1007/s11661-018-4669-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4669-1

Navigation