Skip to main content
Log in

Precipitate Phase Evolution in a 11Cr Ferritic/Martensitic Steel During Tempering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The precipitate phases of a 11Cr F/M steel normalized at 1323 K (1050 °C) for 0.5 h and tempered for 1.5 h at temperatures ranging from 573 K to 1053 K (300 °C to 780 °C) were investigated using transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the normalized condition, Fe-rich M3C, Fe-rich M7C3, and large MC carbides were identified in the steel. In the relatively low tempering temperature ranging from 573 K to 773 K (300 °C to 500 °C), Fe-rich M2C, Fe-rich M3C, and large-sized Nb-rich MC carbides were observed in the steel. In the high tempering temperature ranging from 873 K to 1053 K (600 °C to 780 °C), Cr-rich M2C, Cr-rich M3C2, Cr-rich M23C6, and Fe-rich M5C2 carbides and MX particles including Nb-rich, Ta-Nb-rich, and V-rich MC carbides were detected in steel besides large MX particles. The process of precipitate phase evolution in the steel during tempering is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Abe, T. Noda, H. Araki, and M. Okada: J. Nucl. Sci. Technol., 1994, vol. 31, pp. 279–92.

    Article  Google Scholar 

  2. R.L. Klueh and D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, West Conshohocken, PA, 2001, pp. 5–27.

    Book  Google Scholar 

  3. R.L. Klueh and A.T. Nelson: J. Nucl. Mater., 2007, vol. 371, pp. 37–52.

    Article  Google Scholar 

  4. P. Yvon and F. Carré: J. Nucl. Mater., 2009, vol. 385, pp. 217–22.

    Article  Google Scholar 

  5. F. Abe: Sci. Technol. Adv. Mater., 2008, vol. 9, art. no. 013002.

  6. Y. Shen, H. Liu, Z. Shang, and Z. Xu: J. Nucl. Mater., 2015, vol. 465, pp. 373–82.

    Article  Google Scholar 

  7. J. Hald and Z. Kuboñ (1997) Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels, In: A. Strang and D.J. Gooch (eds). The Institute of Materials, London, pp. 159–76.

    Google Scholar 

  8. I. Fedorova, A.Kostka, E.Tkachev, A.Belyakov, and R.Kaibyshev: Mater. Sci. Eng. A, 2016, vol. 662, pp. 443–55.

    Article  Google Scholar 

  9. C. Hurtado-Noreña, C. A. Danon, M. Luppo, and P. Bruzzoni: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3972–88.

    Article  Google Scholar 

  10. N. Dudova and R. Kaibyshev: ISIJ Int., 2011, vol. 51, pp.826–31.

    Article  Google Scholar 

  11. A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev: Met. Sci. Heat Treat., 2010, vol. 52, pp.100–10.

    Article  Google Scholar 

  12. W.B. Jones, C.R. Hills, and D.H. Polonis: Metall. Trans. A, 1991, vol. 22, pp. 1049–58.

    Article  Google Scholar 

  13. X. G. Tao, L. Z. Han, and J. F Gu: Mater. Sci. Eng. A, 2014, vol. 618, pp. 189–204.

    Article  Google Scholar 

  14. Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han, and W.S. Ryu: J. Nucl. Mater., 2010, vol. 400, pp.94–102.

    Article  Google Scholar 

  15. A. Mandal and T. K. Bandyopadhay: Mater. Sci. Eng. A, 2015, vol. 620, pp. 463–70.

    Article  Google Scholar 

  16. A. Kr Metya, M. Ghosh, N. Parida, and K. Balasubramaniam: Mater. Charact., 2015, vol. 107, pp. 14–22.

    Article  Google Scholar 

  17. Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han, and W.S. Ryu: Nucl. Eng. Des., 2009, vol. 239, pp. 648–54.

    Article  Google Scholar 

  18. J.M. Vitek and R. L. Klueh: Metall. Trans. A, 1983, vol. 14, pp. 1047–55.

    Article  Google Scholar 

  19. Y.Z. Shen, B. Ji, X.L. Zhou, and J. Zhu: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2950–62.

    Article  Google Scholar 

  20. F. Masuyama (1999) New developments in steels for power generation boilers, R. Viswanathan and J. Nutting, (eds). The Institute of Materials, London, pp. 33–48

    Google Scholar 

  21. Y. Hirotsu and S. Nagakura: Acta Metall., 1972, vol. 20, pp. 645–55.

    Article  Google Scholar 

  22. Y. Hirotsu and S. Nagakura: Trans. JIM, 1974, vol. 15, pp. 129–34.

    Article  Google Scholar 

  23. M. Manes, A.D. Damick, M. Mentser, E.M. Cohn, and L.J.E. Hofer: J. Am. Chem. Soc., 1952, vol. 74, pp. 6207–09.

    Article  Google Scholar 

  24. H. Djebaili, H. Zedira, A. Djelloul, and A. Boumaza: Mater. Charact., 2009, vol. 60, pp. 946–952.

    Article  Google Scholar 

  25. M. Vijayalakshmi and B. Raj: Phase evolution diagrams: a new approach to mean metal temperature of ferritic components, Universities Press, Hyderabad, 2006, pp. 25–91.

    Google Scholar 

  26. G. J. Cai, H. O. Andren, and F. L. E. Svensson: Mater. Sci. Eng. A, 1998, vol. 242, pp. 202–09.

    Article  Google Scholar 

  27. H. Chi, D. Ma, H. Xu, W. Zhu, and J. Jiang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 484–88.

    Article  Google Scholar 

  28. X. Zhou, Y. Shen, and Z. Xu: Acta Metall. Sin., 2015, vol. 28, pp. 48–57.

    Article  Google Scholar 

  29. Y. Shen, X. Zhou, T. Shi, X. Huang, Z. Shang, W. Liu, B. Ji and Z. Xu: Mater. Charact., 2016, vol. 122, pp. 113-23.

    Article  Google Scholar 

  30. R. V. Yakovenko, V. A. Maslyuk, A. N. Gripachevskii, and V. B. Deimontovich: Powder Metall. Met. Ceram., 2011, vol. 50, pp. 182–88.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Program of the National Natural Science Foundation of China (51034011), the National Magnetic Confinement Fusion Program of The Department of Science and Technology of China (2011GB113001), and the Shanghai Pujiang Program. The authors thank Prof. Aidang Shan from Shanghai Jiao Tong University for supplying the experimental steel plate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinzhong Shen.

Additional information

Manuscript submitted December 29, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Shen, Y. Precipitate Phase Evolution in a 11Cr Ferritic/Martensitic Steel During Tempering. Metall Mater Trans A 49, 3486–3500 (2018). https://doi.org/10.1007/s11661-018-4668-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4668-2

Navigation