Skip to main content

Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy

Abstract

This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard’s law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the βZr phase from martensite during tempering, and stable retention of the βZr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the \(\alpha \leftrightarrow \beta \) transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Notes

  1. \({\alpha _{\rm Sn}} = {\alpha _{\rm Sn}}(20^\circ C) + 3.1 \times {10^{ - 5}}(T - 20^\circ C)\rm{{{\AA }}}\)

  2. The maximum solubilities of Nb and Mo in \(\alpha \) Zr are reported to be low (less than 0.6 pct[24] and 0.2 pct,[30] respectively)

  3. This value was chosen to permit the \(\beta \) phase volume fraction between 1000 °C and 1050 °C to be 100 pct. This is the only ’free’ parameter of this model. The value is comparable to the Sn tetragonal edge a lattice parameter of 3.17488Å.

References

  1. B. Cheadle, R. Holt, V. Fidleris, A. Causey, and V. Urbanic: in zirconium in the nuclear industry, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1982, pp. 193–193–15.

    Book  Google Scholar 

  2. Y. Idrees, Z. Yao, M. Sattari, M. A. Kirk, and M. R. Daymond: J. Nucl. Mater., 2013, vol. 441(1-3), pp. 138–151.

    Article  Google Scholar 

  3. H. Yu, K. Zhang, Z. Yao, M. A. Kirk, F. Long, and M. R. Daymond: J. Nucl. Mater., 2016, vol. 469, pp. 9–19.

    Article  Google Scholar 

  4. J. Liang, H. Yu, A. Barry, E. C. Corcoran, L. Balogh, and M. R. Daymond: J. Alloys Compd., 2017, vol. 716, pp. 7–12.

    Article  Google Scholar 

  5. M. Sattari, R. A. Holt, and M. R. Daymond: J. Nucl. Mater., 2013, vol. 435(1-3), pp. 241–249.

    Article  Google Scholar 

  6. M. Sattari, R. A. Holt, and M. R. Daymond: J. Nucl. Mater., 2014, vol. 453(1-3), pp. 120–123.

    Article  Google Scholar 

  7. K. F. Ahmmed, M. R. Daymond, and M. A. Gharghouri: J. Alloys Compd., 2016, vol. 687, pp. 1021–1033.

    Article  Google Scholar 

  8. R. A. Holt: J. Nucl. Mater., 1970, vol. 35, pp. 322–334.

    Article  Google Scholar 

  9. C. E. L. Hunt and P. Niessen: J. Nucl. Mater., 1970, vol. 35(1), pp. 134–136.

    Article  Google Scholar 

  10. M. Canay, C. A. Dan, and D. Arias: J. Nucl. Mater., 2000, vol. 280, pp. 365–371.

    Article  Google Scholar 

  11. K. Yan, D. G. Carr, S. Kabra, M. Reid, A. Studer, R. P. Harrison, R. Dippenaar, and K. D. Liss: Adv. Eng. Mater., 2011, vol. 13(9), pp. 882–886.

    Article  Google Scholar 

  12. H. W. King: J. Mater. Sci., 1966, vol. 1(1), pp. 79–90.

    Article  Google Scholar 

  13. M. Griffiths, J. E. Winegar, and A. Buyers: J. Nucl. Mater., 2008, vol. 383(1-2), pp. 28–33.

    Article  Google Scholar 

  14. M. Ivermark, J. Robson, M. Preuss, and S. W. Dean: J. ASTM Int., 2010, vol. 7(7), p. 103011.

    Article  Google Scholar 

  15. S. Banerjee, S. Vijayakar, and R. Krishnan: J. Nucl. Mater., 1976, vol. 62(2-3), pp. 229–239.

    Article  Google Scholar 

  16. S. Kabra, K. Yan, D. G. Carr, R. P. Harrison, R. J. Dippenaar, M. Reid, and K.-D. Liss: J. Appl. Phys., 2013, vol. 113(6), p. 063513.

    Article  Google Scholar 

  17. V. F. Sears: Can. J. Phys., 1978, vol. 56(10), pp. 1261–1288.

    Article  Google Scholar 

  18. A. Huq, J. P. Hodges, O. Gourdon, and L. Heroux: Z. Kristallogr., 2011, vol. 1, pp. 127–135.

    Google Scholar 

  19. M. R. Daymond, R. A. Holt, S. Cai, P. Mosbrucker, and S. C. Vogel: Acta Mater., 2010, vol. 58(11), pp. 4053–4066.

    Article  Google Scholar 

  20. T. Ungár, L. Balogh, and G. Ribárik: Metall. Mater. Trans. A, 2009, vol. 41A, pp. 1202–1209.

    Google Scholar 

  21. J. Goldak, L. Lloyd, and C. Barrett: Phys. Rev., 1966, vol. 144(2), pp. 478–484.

    Article  Google Scholar 

  22. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  Google Scholar 

  23. H. Okamoto: J. Phase Equilib., 2003, vol. 24(3), pp. 279–279.

    Article  Google Scholar 

  24. J. P. Abriata and J. C. Bolcich: Bull. Alloy Phase Diagrams, 1982, vol. 3(1), pp. 34–44.

    Article  Google Scholar 

  25. R. Ross and W. Hume-Rothery: J. Less-Common Met., 1963, vol. 5(3), pp. 258–270.

    Article  Google Scholar 

  26. J. W. Edwards, R. Speiser, and H. L. Johnston: J. Appl. Phys., 1951, vol. 22(4), pp. 424–428.

    Article  Google Scholar 

  27. A. Heiming and W. Petry: J. Phys.: Condens. Matter, 1992, vol. 4, pp. 727–733.

    Google Scholar 

  28. J. Thewlis and A. R. Davey: Nature, 1954, vol. 174(4439), pp. 1011–1011.

    Article  Google Scholar 

  29. J. P. Abriata, J. C. Bolcich, and D. Arias: Bull. Alloy Phase Diagrams, 1984, vol. 5(1), p. 21.

    Article  Google Scholar 

  30. R. Jerlerud Pérez  Sundman: CALPHAD: Comput. Coupling Phase Diagrams Thermochem. , 2003, vol. 27(3), pp. 253–262.

    Article  Google Scholar 

  31. H. Richter, P. Wincierz, K. Anderko, and U. Zwicker: J. Less-Common Met. , 1962, vol. 4(3), pp. 252–265.

    Article  Google Scholar 

  32. D. Douglass: J. Nucl. Mater., 1965, vol. 15(1), pp. 49–56.

    Article  Google Scholar 

  33. M. Sattari, R. A. Holt, and M. R. Daymond: J. Nucl. Mater., 2014, vol. 452(1-3), pp. 265–272.

    Article  Google Scholar 

  34. C. P. Luo and G. C. Weatherly: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 1153–1162.

    Article  Google Scholar 

  35. G. M. Benites, A. F. Guillermet, G. J. Cuello, and J. Campo: J. Alloys Compd., 2000, vol. 299(1-2), pp. 183–188.

    Article  Google Scholar 

  36. C. Toffolon-Masclet, J. C. Brachet, C. Servant, J. M. Joubert, P. Barberis, N. Dupin, P. Zeller, M. Limback, B. Kammenzind, and S. W. Dean: J. ASTM Int. , 2008, vol. 5(7), p. 101122.

    Article  Google Scholar 

  37. R. W. L. Fong, R. Miller, H. J. Saari, and S. C. Vogel: Metall. Mater. Trans. A, 2011, vol. 43A, pp. 806–821.

    Google Scholar 

  38. S. Neogy, D. Srivastava, J. K. Chakravartty, G. K. Dey, and S. Banerjee: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 485–498.

    Article  Google Scholar 

  39. T. Forgeron, J. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J. Mardon, and C. Bernaudat: Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp. 256–78.

  40. S. Banerjee, G. K. Dey, D. Srivastava, and S. Ranganathan: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2201–2216.

    Article  Google Scholar 

  41. F. Xu, R. A. Holt, and M. R. Daymond: Acta Mater., 2008, vol. 56(14), pp. 3672–3687.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the NSERC/NRCan Gen-IV Project, and the NSERC, UNENE, and Nu-Tech Precision Metals Industrial Research Chair Program at Queen’s University. This research at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors are thankful for the assistance of Dr. Whitfield, Dr. Kirkham, and Dr. Huq in performing the measurements at POWGEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cochrane.

Additional information

Manuscript submitted September 01, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cochrane, C., Daymond, M.R. Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy. Metall Mater Trans A 49, 3468–3485 (2018). https://doi.org/10.1007/s11661-018-4662-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4662-8