Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 8, pp 3468–3485 | Cite as

Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy

  • C. Cochrane
  • M. R. Daymond
Article

Abstract

This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard’s law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the βZr phase from martensite during tempering, and stable retention of the βZr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the \(\alpha \leftrightarrow \beta \) transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.

Notes

Acknowledgments

This work has been supported by the NSERC/NRCan Gen-IV Project, and the NSERC, UNENE, and Nu-Tech Precision Metals Industrial Research Chair Program at Queen’s University. This research at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors are thankful for the assistance of Dr. Whitfield, Dr. Kirkham, and Dr. Huq in performing the measurements at POWGEN.

References

  1. 1.
    B. Cheadle, R. Holt, V. Fidleris, A. Causey, and V. Urbanic: in zirconium in the nuclear industry, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1982, pp. 193–193–15.CrossRefGoogle Scholar
  2. 2.
    Y. Idrees, Z. Yao, M. Sattari, M. A. Kirk, and M. R. Daymond: J. Nucl. Mater., 2013, vol. 441(1-3), pp. 138–151.CrossRefGoogle Scholar
  3. 3.
    H. Yu, K. Zhang, Z. Yao, M. A. Kirk, F. Long, and M. R. Daymond: J. Nucl. Mater., 2016, vol. 469, pp. 9–19.CrossRefGoogle Scholar
  4. 4.
    J. Liang, H. Yu, A. Barry, E. C. Corcoran, L. Balogh, and M. R. Daymond: J. Alloys Compd., 2017, vol. 716, pp. 7–12.CrossRefGoogle Scholar
  5. 5.
    M. Sattari, R. A. Holt, and M. R. Daymond: J. Nucl. Mater., 2013, vol. 435(1-3), pp. 241–249.CrossRefGoogle Scholar
  6. 6.
    M. Sattari, R. A. Holt, and M. R. Daymond: J. Nucl. Mater., 2014, vol. 453(1-3), pp. 120–123.CrossRefGoogle Scholar
  7. 7.
    K. F. Ahmmed, M. R. Daymond, and M. A. Gharghouri: J. Alloys Compd., 2016, vol. 687, pp. 1021–1033.CrossRefGoogle Scholar
  8. 8.
    R. A. Holt: J. Nucl. Mater., 1970, vol. 35, pp. 322–334.CrossRefGoogle Scholar
  9. 9.
    C. E. L. Hunt and P. Niessen: J. Nucl. Mater., 1970, vol. 35(1), pp. 134–136.CrossRefGoogle Scholar
  10. 10.
    M. Canay, C. A. Dan, and D. Arias: J. Nucl. Mater., 2000, vol. 280, pp. 365–371.CrossRefGoogle Scholar
  11. 11.
    K. Yan, D. G. Carr, S. Kabra, M. Reid, A. Studer, R. P. Harrison, R. Dippenaar, and K. D. Liss: Adv. Eng. Mater., 2011, vol. 13(9), pp. 882–886.CrossRefGoogle Scholar
  12. 12.
    H. W. King: J. Mater. Sci., 1966, vol. 1(1), pp. 79–90.CrossRefGoogle Scholar
  13. 13.
    M. Griffiths, J. E. Winegar, and A. Buyers: J. Nucl. Mater., 2008, vol. 383(1-2), pp. 28–33.CrossRefGoogle Scholar
  14. 14.
    M. Ivermark, J. Robson, M. Preuss, and S. W. Dean: J. ASTM Int., 2010, vol. 7(7), p. 103011.CrossRefGoogle Scholar
  15. 15.
    S. Banerjee, S. Vijayakar, and R. Krishnan: J. Nucl. Mater., 1976, vol. 62(2-3), pp. 229–239.CrossRefGoogle Scholar
  16. 16.
    S. Kabra, K. Yan, D. G. Carr, R. P. Harrison, R. J. Dippenaar, M. Reid, and K.-D. Liss: J. Appl. Phys., 2013, vol. 113(6), p. 063513.CrossRefGoogle Scholar
  17. 17.
    V. F. Sears: Can. J. Phys., 1978, vol. 56(10), pp. 1261–1288.CrossRefGoogle Scholar
  18. 18.
    A. Huq, J. P. Hodges, O. Gourdon, and L. Heroux: Z. Kristallogr., 2011, vol. 1, pp. 127–135.Google Scholar
  19. 19.
    M. R. Daymond, R. A. Holt, S. Cai, P. Mosbrucker, and S. C. Vogel: Acta Mater., 2010, vol. 58(11), pp. 4053–4066.CrossRefGoogle Scholar
  20. 20.
    T. Ungár, L. Balogh, and G. Ribárik: Metall. Mater. Trans. A, 2009, vol. 41A, pp. 1202–1209.Google Scholar
  21. 21.
    J. Goldak, L. Lloyd, and C. Barrett: Phys. Rev., 1966, vol. 144(2), pp. 478–484.CrossRefGoogle Scholar
  22. 22.
    F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–68.CrossRefGoogle Scholar
  23. 23.
    H. Okamoto: J. Phase Equilib., 2003, vol. 24(3), pp. 279–279.CrossRefGoogle Scholar
  24. 24.
    J. P. Abriata and J. C. Bolcich: Bull. Alloy Phase Diagrams, 1982, vol. 3(1), pp. 34–44.CrossRefGoogle Scholar
  25. 25.
    R. Ross and W. Hume-Rothery: J. Less-Common Met., 1963, vol. 5(3), pp. 258–270.CrossRefGoogle Scholar
  26. 26.
    J. W. Edwards, R. Speiser, and H. L. Johnston: J. Appl. Phys., 1951, vol. 22(4), pp. 424–428.CrossRefGoogle Scholar
  27. 27.
    A. Heiming and W. Petry: J. Phys.: Condens. Matter, 1992, vol. 4, pp. 727–733.Google Scholar
  28. 28.
    J. Thewlis and A. R. Davey: Nature, 1954, vol. 174(4439), pp. 1011–1011.CrossRefGoogle Scholar
  29. 29.
    J. P. Abriata, J. C. Bolcich, and D. Arias: Bull. Alloy Phase Diagrams, 1984, vol. 5(1), p. 21.CrossRefGoogle Scholar
  30. 30.
    R. Jerlerud Pérez  Sundman: CALPHAD: Comput. Coupling Phase Diagrams Thermochem. , 2003, vol. 27(3), pp. 253–262.CrossRefGoogle Scholar
  31. 31.
    H. Richter, P. Wincierz, K. Anderko, and U. Zwicker: J. Less-Common Met. , 1962, vol. 4(3), pp. 252–265.CrossRefGoogle Scholar
  32. 32.
    D. Douglass: J. Nucl. Mater., 1965, vol. 15(1), pp. 49–56.CrossRefGoogle Scholar
  33. 33.
    M. Sattari, R. A. Holt, and M. R. Daymond: J. Nucl. Mater., 2014, vol. 452(1-3), pp. 265–272.CrossRefGoogle Scholar
  34. 34.
    C. P. Luo and G. C. Weatherly: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 1153–1162.CrossRefGoogle Scholar
  35. 35.
    G. M. Benites, A. F. Guillermet, G. J. Cuello, and J. Campo: J. Alloys Compd., 2000, vol. 299(1-2), pp. 183–188.CrossRefGoogle Scholar
  36. 36.
    C. Toffolon-Masclet, J. C. Brachet, C. Servant, J. M. Joubert, P. Barberis, N. Dupin, P. Zeller, M. Limback, B. Kammenzind, and S. W. Dean: J. ASTM Int. , 2008, vol. 5(7), p. 101122.CrossRefGoogle Scholar
  37. 37.
    R. W. L. Fong, R. Miller, H. J. Saari, and S. C. Vogel: Metall. Mater. Trans. A, 2011, vol. 43A, pp. 806–821.Google Scholar
  38. 38.
    S. Neogy, D. Srivastava, J. K. Chakravartty, G. K. Dey, and S. Banerjee: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 485–498.CrossRefGoogle Scholar
  39. 39.
    T. Forgeron, J. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J. Mardon, and C. Bernaudat: Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp. 256–78.Google Scholar
  40. 40.
    S. Banerjee, G. K. Dey, D. Srivastava, and S. Ranganathan: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2201–2216.CrossRefGoogle Scholar
  41. 41.
    F. Xu, R. A. Holt, and M. R. Daymond: Acta Mater., 2008, vol. 56(14), pp. 3672–3687.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations