Prenucleation Induced by Crystalline Substrates

Article

Abstract

Prenucleation refers to the phenomenon of atomic ordering in the liquid adjacent to the substrate/liquid interface at temperatures above the liquidus. In this paper, we have systematically investigated and holistically quantified the prenucleation phenomenon as a function of temperature and the lattice misfit between the substrate and the solid, using molecular dynamics (MD) simulations. Our results have confirmed that at temperatures above the liquidus, the atoms in the liquid at the interface may exhibit pronounced atomic ordering, manifested by atomic layering normal to the interface, in-plane atomic ordering parallel to the interface, and the formation of a 2-dimensional (2D) ordered structure (a few atomic layers in thickness) on the substrate surface. Holistic quantification of such atomic ordering at the interface has revealed that the atomic layering is independent of lattice misfit and is only slightly enhanced by reducing temperature while both in-plane atomic ordering and the formation of the 2D ordered structure are significantly enhanced by reducing the lattice misfit and/or temperature. This substrate-induced atomic ordering in the liquid may have a significant influence on the subsequent heterogeneous nucleation process.

Notes

Acknowledgments

Authors would like to thank Dr. C.M. Fang and Professor H. Assadi for constructive discussion and Dr. I. Stone for carefully reading and correcting the manuscript. The EPSRC is gratefully acknowledged for providing financial support under Grant EP/H026177/1.

Supplementary material

11661_2018_4628_MOESM1_ESM.mpg (2.6 mb)
Supplementary material 1 (MPG 2652 kb)

References

  1. 1.
    K.F. Kelton and A.L. Greer: Nucleation in condensed matter: Applications in materials and biology, Pergamon, Oxford, 2010.Google Scholar
  2. 2.
    Z. Fan: Mater. Trans. A, 2013, vol. 44, pp. 1409-18.CrossRefGoogle Scholar
  3. 3.
    W.D. Kaplan and Y. Kauffmann: Annu. Rev. Mater. Res., 2006, vol. 36, pp. 1-48.CrossRefGoogle Scholar
  4. 4.
    M. Asta, F. Spaepen, J.F. Veen, 2004. MRS Bulletin.  https://doi.org/10.1557/mrs2004.261 Google Scholar
  5. 5.
    O.M. Magnussen, B.M. Ocko, M.J. Regan, K. Penanen, P.S. Pershan and M. Deutsch: Phys. Rev. Lett., 1995, vol. 74, pp. 4444-7.CrossRefGoogle Scholar
  6. 6.
    M.J. Regan, E.H. Kawamoto, S. Lee, P.S. Pershan, N. Maskil, M. Deutsch, O.M. Magnussen, B.M. Ocko and L.E. Berman: Phys. Rev. Lett., 1995, vol. 75, pp. 2498-501.CrossRefGoogle Scholar
  7. 7.
    O.G. Shpyrko, A.Y. Grigoriev, C. Steimer, P.S. Pershan, B. Lin, M. Meron, T. Graber, J. Gerbhardt, B. Ocko and M. Deutsch: Phys. Rev. B, 2004, vol. 70, pp. 224206.CrossRefGoogle Scholar
  8. 8.
    W.J. Huisman, J.F. Peters, M.J. Zwanenburg, S.A. de Vries, T.E. Derry, D. Abernathy and J.F. van der Veen: Nature, 1997, vol. 390, pp. 379-81.CrossRefGoogle Scholar
  9. 9.
    C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin and P. Dutta: Phys. Rev. Lett., 1999, vol. 82, pp. 2326-9.CrossRefGoogle Scholar
  10. 10.
    H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann and G. Reiter: Nature, 2000, vol. 408, pp. 839-41.CrossRefGoogle Scholar
  11. 11.
    A.K. Doerr, M. Tolan, J.P. Schlomka and W. Press: Euro. Phys. Lett., 2000, vol. 52, pp. 330-6.CrossRefGoogle Scholar
  12. 12.
    S.E. Donnelly, R.C. Birtcher, C.W. Allen, I. Morrison, K. Furuya, M.H. Song, K. Mitsuishi and U. Dahmen: Science, 2002, vol. 296, pp. 507-10.CrossRefGoogle Scholar
  13. 13.
    J. Fischer and M. Methfessel: Phys. Rev. A, 1980, vol. 22, pp. 2836-43.CrossRefGoogle Scholar
  14. 14.
    W.E. McMullen and D.W. Oxtoby: J. Chem. Phys., 1987, vol. 86, pp. 4146-56.CrossRefGoogle Scholar
  15. 15.
    W.A. Curtin: Phys. Rev. Lett., 1987, vol. 59, pp. 1228-31.CrossRefGoogle Scholar
  16. 16.
    J.H. Sikkenk, J.O. Indekeu, J.M.J. van Leeuwen and E.O.Vossnack: Phys. Rev. Lett., 1987, vol. 59, pp. 98-101.CrossRefGoogle Scholar
  17. 17.
    W.-J. Ma, J.R. Banavar and J. Koplik: J. Chem. Phys., 1992, vol. 97, pp. 485-93.CrossRefGoogle Scholar
  18. 18.
    P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136B, pp. 864-71.CrossRefGoogle Scholar
  19. 19.
    W. Kohn and L.J. Sham: Phys. Rev., 1965, vol. 140A, pp. 1133-8.CrossRefGoogle Scholar
  20. 20.
    S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan and M. Rühle: Science, 2005, vol. 310, pp. 661-3.CrossRefGoogle Scholar
  21. 21.
    S.H. Oh, C. Scheu and M. Rühle: Korean J. Electron Microscopy Special Issue, 2006, vol. 1, pp. 19-24.Google Scholar
  22. 22.
    T.U. Schülli, R. Daudin, G. Renaud, A. Vaysset, O. Geaymond and A. Pasturel: Nature, 2010, vol. 464, pp. 1174-7.CrossRefGoogle Scholar
  23. 23.
    P. Geysermans, D. Gorse and V. Pontikis: J. Chem. Phys., 2000, vol. 113, pp. 6382-9.CrossRefGoogle Scholar
  24. 24.
    A. Hashibon, J. Adler, M.W. Finnis and W.D. Kaplan: Interface Sci., 2001, vol. 9, pp. 175-81.CrossRefGoogle Scholar
  25. 25.
    A. Hashibon, J. Adler, M.W. Finnis and W.D. Kaplan: Comp. Mater. Sci., 2002, vol. 24, pp. 443-52.CrossRefGoogle Scholar
  26. 26.
    J.P. Palafox-Hernandez, B.B. Laird and M. Asta: Acta Mater., 2011, vol. 59, pp. 3137-44.CrossRefGoogle Scholar
  27. 27.
    H. Men and Z. Fan: Comp. Mater. Sci., 2014, vol. 85, pp. 1-7.CrossRefGoogle Scholar
  28. 28.
    J.S. Wang, A. Horsfield, U. Schwingenschlögl and P.D. Lee: Phys. Rev. B, 2010, vol. 82, pp. 184203.CrossRefGoogle Scholar
  29. 29.
    K.A. Jackson: Interface Sci., 2002, vol. 10, pp. 159-69.CrossRefGoogle Scholar
  30. 30.
    P.R. Ten Wolde, M.J. Ruiz-Montero and D. Frenkel: Phys. Rev. Lett., 1995, vol. 75, pp. 2714-7.CrossRefGoogle Scholar
  31. 31.
    S. Auer and D. Frenkel: J. Chem. Phys., 2004, vol. 120, pp. 3015-29.CrossRefGoogle Scholar
  32. 32.
    S. Auer and D. Frenkel: Nature, 2001, vol. 409, pp. 1020-3.CrossRefGoogle Scholar
  33. 33.
    C.M. Fang and Z. Fan: to be submitted, 2017.Google Scholar
  34. 34.
    R.R. Zope and Y. Mishin: Phys. Rev. B, 2003, vol. 68, pp. 024102.CrossRefGoogle Scholar
  35. 35.
    I.T. Todorov, W. Smith, K. Trachenko and M.T. Dove: J. Mater. Chem., 2006, vol. 16, pp. 1911-8.CrossRefGoogle Scholar
  36. 36.
    J.R. Hook and H.E. Hall: Solid state physics, 2nd ed., Wiley, Chichester, 1991.Google Scholar
  37. 37.
    P.J. Steinhardt, D.R. Nelson and M. Ronchetti: Phys. Rev. B, 1983, vol. 28, pp. 784-805.CrossRefGoogle Scholar
  38. 38.
    J.P. Hirth and J. Lothe: Theory of dislocations, 2nd ed., John Wiley, New York, 1982.Google Scholar
  39. 39.
    J.X. Zhu, M. Li, R. Rogers, W. Meyer, R.H. Ottewill, STS-73 Space Shuttle Crew, W.B. Russel and P.M. Chaikin: Nature, 1997, vol. 387, pp. 883-5.Google Scholar
  40. 40.
    P.N. Pusey, W. van Megan, P. Bartlett, B.J. Ackerson, J.G. Rarity and S.M. Underwood: Phys. Rev. Lett., 1989, vol. 63, pp. 2753-6.CrossRefGoogle Scholar
  41. 41.
    K.F. Kelton, A.L. Greer, D.M. Herlach, D. Holland-Moritz, 2004, MRS Bulletin,  https://doi.org/10.1557/mrs2004.264 Google Scholar
  42. 42.
    R.P. Jensen. PhD thesis, University of Wisconsin-Madison, US, 1998.Google Scholar
  43. 43.
    B. Jiang, H. Men and Z. Fan: to be submitted, 2017.Google Scholar
  44. 44.
    G.P. Jones and J. Pearson: Metall. Trans. B, 1976, vol. 7, pp. 223-34.CrossRefGoogle Scholar
  45. 45.
    G.P. Jones: Solidification processing 1987, The Institute of Metals, London, 1988, pp. 496Google Scholar
  46. 46.
    A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823-35.CrossRefGoogle Scholar
  47. 47.
    T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859-68.CrossRefGoogle Scholar
  48. 48.
    Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292-304.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.BCASTBrunel University LondonUxbridgeUK

Personalised recommendations