Microstructural Evaluation of Inductively Sintered Aluminum Matrix Nanocomposites Reinforced with Silicon Carbide and/or Graphene Nanoplatelets for Tribological Applications

  • Mohammad Islam
  • Yasir Khalid
  • Iftikhar Ahmad
  • Abdulhakim A. Almajid
  • Amine Achour
  • Theresa J. Dunn
  • Aftab Akram
  • Saqib Anwar
Article
  • 44 Downloads

Abstract

Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.

Notes

Acknowledgment

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-283.

Conflict of interest

The authors express no conflict of interest.

References

  1. 1.
    N. Chawla, and K.K. Chawla: Metal Matrix Composites, Springer, New York (2013).CrossRefGoogle Scholar
  2. 2.
    Rawal, S.: JOM, 2001, vol. 53(4), pp. 14-17.CrossRefGoogle Scholar
  3. 3.
    P. Stoyanov, D. Linsler, T. Schlarb, M. Scherg, R. Schwaiger: J. Mater. Sci., 2015, vol. 50, pp. 5524-32.CrossRefGoogle Scholar
  4. 4.
    M.O. Bodunrina, K.K. Alaneme, L.H. Chown: J. Mater. Res. Technol., 2015, vol. 4(4), pp. 434-45.CrossRefGoogle Scholar
  5. 5.
    K. Ma, E.J. Lavernia, J.M. Schoenung: Rev. Adv. Mater. Sci., 2017, vol. 48(2), pp. 91-104.Google Scholar
  6. 6.
    Z. Li, G. Fan, Q. Guo, Z. Li, Y. Su, D. Zhang: Carbon, 2015, vol. 95, 419-427.CrossRefGoogle Scholar
  7. 7.
    C.-L. Chen, C.-H. Lin: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3687-3695.CrossRefGoogle Scholar
  8. 8.
    L. Xin, W. Yang, Q. Zhao, R. Dong, X. Liang, Z. Xiu, M. Hussain, G. Wu: Mater. Sci. Eng. A, 2017, vol. 682, pp. 38-44.CrossRefGoogle Scholar
  9. 9.
    Y. Uematsu, K. Tokaji, M. Kawamura: Compos. Sci. Technol., 2008, vol. 68, pp. 2785-91.CrossRefGoogle Scholar
  10. 10.
    S. Mahdavi, F. Akhlaghi: J. Mater. Sci., 2011, vol. 46, pp. 7883-94.CrossRefGoogle Scholar
  11. 11.
    Z.G. Wang, C.P. Li, H.Y. Wang, J.N. Zhu, C. Wang, Q.C. Jiang: J. Mater. Eng. Perform., 2017, vol. 26(2), 729-35.CrossRefGoogle Scholar
  12. 12.
    S. Zhang, F. Wang: J. Mater. Processing. Technol., 2007, vol. 182, pp. 122–27.CrossRefGoogle Scholar
  13. 13.
    K.M. Shorowordi, A.S.M.A. Haseeb, J.P. Celis: Wear, 2004, vol. 256, pp. 1176-81.CrossRefGoogle Scholar
  14. 14.
    Gracio JJ, Picu CR, Vincze G, Mathew N, Schubert T, Lopes A, Buchheim C (2013) Metall Mater Trans 44: 5259-69.CrossRefGoogle Scholar
  15. 15.
    A. Doraisamy and S. Thiagarajan: Adv. Tribol., 2014, vol. 273738, 8 pp.Google Scholar
  16. 16.
    J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang: Scripta Mater., 2012, vol. 66, pp. 594-7.CrossRefGoogle Scholar
  17. 17.
    A. El-Ghazaly, G. Anis, H.G. Salem: Compos. A, 2017, vol. 95, pp. 325-36.CrossRefGoogle Scholar
  18. 18.
    S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee: Mater. Sci. Eng., 2011, vol. 528(27), pp. 7933-37.CrossRefGoogle Scholar
  19. 19.
    T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Loffler, P.J. Uggowitzer: Mater. Sci. Eng. A, 2007, vol. 448, pp. 1-6.CrossRefGoogle Scholar
  20. 20.
    T. Sritharan, L.S. Chan, L.K. Tan, N.P. Hung: Mater. Character., 2001, vol. 47, pp. 75-77.CrossRefGoogle Scholar
  21. 21.
    W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, M. Yu: Int. J. Miner. Metall. Mater., 2016, vol. 23(6), pp. 723-9.CrossRefGoogle Scholar
  22. 22.
    B. Hekner, J. Myalski, N. Valle, A.B. Probierz, M.S. Lizer, J. Wieczorek: Compos. B, 2017, vol. 108, pp. 291–300.CrossRefGoogle Scholar
  23. 23.
    A.F. Boostani, S. Yazdani, R.T. Mousavian, S. Tahamtanc, R.A. Khosroshahi, D. Wei, D. Brabazon, J.Z. Xu, X.M. Zhang, Z.Y. Jiang: Mater. Des., 2015, vol. 88, pp. 983-89.CrossRefGoogle Scholar
  24. 24.
    I. Ahmad, M. Islam, T. Subhani, and Y. Zhu: Nanotechnology, 2016, vol. 27(42), pp. 425704, 13 pp.Google Scholar
  25. 25.
    I. Ahmad, M. Islam, H.S. Abdo, T. Subhani, K.A. Khalil, A.A. Almajid, B. Yazdani, Y. Zhu: Mater. Des., 2015, vol. 88, pp. 1234-43.CrossRefGoogle Scholar
  26. 26.
    S. Mahdavi, F. Akhlaghi: Tribol. Lett., 2011, vol. 44(1), pp. 1-12.CrossRefGoogle Scholar
  27. 27.
    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M.H. Alonso, D.H. Adamson, I.A. Aksay: J. Phys. Chem. B., 2006, vol. 110, pp. 8535-39.CrossRefGoogle Scholar
  28. 28.
    H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang: J. Raman Spectrosc., 2013, vol. 44(7), pp. 1018-21.CrossRefGoogle Scholar
  29. 29.
    I. Ahmad, M. Islam, T. Subhani, and Y. Zhu: J. Mater. Eng. Perform. 2015, vol. 24(11), pp. 4236-43.Google Scholar
  30. 30.
    Y. Zhang, C. Pan: Diam. Relat. Mater. 2012, vol. 24, pp. 1-5.CrossRefGoogle Scholar
  31. 31.
    M. Kostecki, J. Wozniak, T. Cygan, M. Petrus, A. Olszyna: Materials, 2017, vol. 10, pp. 928.CrossRefGoogle Scholar
  32. 32.
    P. Ravindran, K. Manisekar, R. Narayanasamy, P. Narayanasamy: Ceram. Int., 2013, vol. 39, pp. 1169-82.CrossRefGoogle Scholar
  33. 33.
    M. Walczak, D. Pieniak, M. Zwierzchowski: Arch. Civ. Mech. Eng., 2015, vol. 15, pp. 116-23.CrossRefGoogle Scholar
  34. 34.
    M. Djafri, M. Bouchetara, C. Busch, S. Weber: Wear, 2014, vol. 321, pp. 8-15.CrossRefGoogle Scholar
  35. 35.
    A. Daoud, M.T.A. El-khair: Tribol. Int., 2010, vol. 43, pp. 544-53.CrossRefGoogle Scholar
  36. 36.
    J.B. Yang, C.B. Lin, T.C. Wang, H.Y. Chu: Wear, 2004, vol. 257, pp. 941-52.CrossRefGoogle Scholar
  37. 37.
    A. Baradeswaran, A.E. Perumal: Compos. B, 2014, vol. 56, pp. 472-76.CrossRefGoogle Scholar
  38. 38.
    F. Akhlaghi, A.Z. Bidaki: Wear, 2009, vol. 266, pp. 37-45.CrossRefGoogle Scholar
  39. 39.
    M.T. Khorshid, E. Omrani, P.L. Menezes, P.K. Rohatgi: Eng. Sci. Technol., 2016, vol. 19, pp. 463-9.Google Scholar
  40. 40.
    X.M. Du, R.Q. Chen, F.G. Liu: Dig. J. Nanomater. Biostruct., 2017, vol. 12(1), pp. 37-45.Google Scholar
  41. 41.
    M. Alipour, R.E. Farsani: Mater. Sci. Eng. A, 2017, vol. 706, pp. 71–82.CrossRefGoogle Scholar
  42. 42.
    L. Jinfeng, J. Longtao, W. Gaohui, T. Shoufu, C. Guoqin: Rare. Metal. Mater. Eng., 2009, vol. 38(11), pp. 1894-98.CrossRefGoogle Scholar
  43. 43.
    P. Kumar, A. Xavior: Mater. Manuf. Process., 2017.  https://doi.org/10.1080/10426914.2017.1279320.Google Scholar
  44. 44.
    A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi: Compos. B., 2015, vol. 77, pp. 402-20.CrossRefGoogle Scholar
  45. 45.
    K. Rajkumar, S. Aravindan: Tribol. Int., 2013, vol. 57, pp. 282-96.CrossRefGoogle Scholar
  46. 46.
    H.J. Choi, S.M. Lee, D.H. Bae: Wear, 2010, vol. 270(1-2), pp. 12-18.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Mohammad Islam
    • 1
  • Yasir Khalid
    • 2
  • Iftikhar Ahmad
    • 1
  • Abdulhakim A. Almajid
    • 3
    • 4
  • Amine Achour
    • 5
  • Theresa J. Dunn
    • 6
  • Aftab Akram
    • 7
  • Saqib Anwar
    • 8
  1. 1.Center of Excellence for Research in Engineering Materials, Deanship of Scientific ResearchKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Institute of Energy Technologies and Centre for Research in NanoengineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.College of EngineeringPrince Sultan UniversityRiyadhSaudi Arabia
  4. 4.Department of Mechanical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Research Centre in Physics of Matter and Radiation (PMR), LISE LaboratoryUniversity of NamurNamurBelgium
  6. 6.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining & TechnologySocorroUSA
  7. 7.School of Chemical and Materials EngineeringNational University of Sciences and TechnologyIslamabadPakistan
  8. 8.Department of Industrial Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations