Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 2692–2704 | Cite as

On the Prediction of Hot Tearing in Al-to-Steel Welding by Friction Melt Bonding

  • N. Jimenez-Mena
  • P. J. Jacques
  • J. M. Drezet
  • A. Simar
Article
  • 181 Downloads

Abstract

Aluminum alloy AA6061 was welded to dual-phase steel 980 (DP980) by the friction melt bonding (FMB) process. Hot tears have been suppressed by controlling the thermomechanical cycle. In particular, the welding speed and the thermal conductivity of the backing plate have been optimized. A finite-element thermomechanical model coupled with the Rappaz–Drezet–Gremaud (RDG) criterion has been used to explain these experimental observations. The hot tear susceptibility has been reduced with large thermal gradients and with the formation of a cellular microstructure. Both effects are favored by a backing plate made of a material with high thermal conductivity, such as copper.

Notes

Acknowledgments

The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy agency, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of FRIA, Belgium. A. Simar acknowledges the financial support (from January 2017) of the European Research Council (ERC) under European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 716678).

Supplementary material

11661_2018_4618_MOESM1_ESM.docx (95 kb)
Supplementary material 1 (DOCX 94 kb)

References

  1. 1.
    X. Cui, H. Zhang, S. Wang, L. Zhang, J. Ko: Mater. Des., 2011, vol. 32, pp. 815–821.CrossRefGoogle Scholar
  2. 2.
    U. Dilthey, L. Stein: Weld. Join., 2006, vol. 11, pp. 135–142.CrossRefGoogle Scholar
  3. 3.
    M. Potesser, T. Schoeberl, H. Antrekowitsch, J. Bruckner: EPD Congr., 2006, pp. 167–76.Google Scholar
  4. 4.
    T. Tanaka, T. Morishige, T. Hirata: Scr. Mater., 2009, vol. 61, pp. 756–759.CrossRefGoogle Scholar
  5. 5.
    A. Simar, J. Lecomte-Beckers, T. Pardoen, B. de Meester: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 170–177.CrossRefGoogle Scholar
  6. 6.
    A. Simar, M.-N. Avettand-Fènoël: Sci. Technol. Weld. Join., 2016, vol. 1718, pp. 1–15.Google Scholar
  7. 7.
    M. Kimura, H. Ishii, M. Kusaka, K. Kaizu, A. Fuji: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 388–395.CrossRefGoogle Scholar
  8. 8.
    H. Ozaki, M. Kutsuna, S. Nakagawa, K. Miyamoto: J. Laser Appl., 2010, vol. 22, pp. 1–2.CrossRefGoogle Scholar
  9. 9.
    C. Van Der Rest, P.J. Jacques, A. Simar: Scr. Mater., 2014, vol. 77, pp. 25–28.CrossRefGoogle Scholar
  10. 10.
    C. Van Der Rest, A. Simar, and P.J. Jacques: International Publication No. WO2013164294 (A1) (patent), 7 November 2013.Google Scholar
  11. 11.
    S. Crucifix, C. Van Der Rest, N. Jimenez-Mena, P.J. Jacques, A. Simar: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 319–324.CrossRefGoogle Scholar
  12. 12.
    M. Rappaz, J. Drezet, M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30, pp. 449–455.CrossRefGoogle Scholar
  13. 13.
    J.M. Drezet, D. Allehaux: Hot Cracking Phenomena in Welds II, 1st ed., Springer-Verlag Berlin Heidelberg, Berlin, 2008, pp. 27–45.CrossRefGoogle Scholar
  14. 14.
    Y. Tian, J.D. Robson, S. Riekehr, N. Kashaev, L. Wang, T. Lowe, A. Karanika: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3533–3544.CrossRefGoogle Scholar
  15. 15.
    N. Bakir, A. Gumenyuk, M. Rethmeier: Weld. World., 2016, vol. 60, pp. 1001–1008.CrossRefGoogle Scholar
  16. 16.
    L. Sweet, M.A. Easton, J.A. Taylor, J.F. Grandfield, C.J. Davidson, L. Lu, M.J. Couper, D.H. Stjohn, Metall. Mater. Trans. A, 2013, vol. 44, pp. 5396–5407.CrossRefGoogle Scholar
  17. 17.
    A.K. Dahle, T. Sumitomo, S. Instone, Metall. Mater. Trans. A, 2003, vol. 34, pp. 105–113.CrossRefGoogle Scholar
  18. 18.
    J.M. Drezet, B. Mireux, G. Kurtuldu, O. Magdysyuk, M. Drakopoulos: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4183–4190.CrossRefGoogle Scholar
  19. 19.
    M. Easton, L. Sweet, H. Wang, J. Grandfield, C.J. Davidson, D.H. Stjohn, M.J. Couper, Metall. Mater. Trans. A, 2012, vol. 43, pp. 3227–3238.CrossRefGoogle Scholar
  20. 20.
    M. Sheikhi, F. Malek Ghaini, H. Assadi: Acta Mater., 2015, vol. 82, pp. 491–502.CrossRefGoogle Scholar
  21. 21.
    S. Tsirkas, P. Papanikos, T. Kermanidis: J. Mater. Process. Technol., 2003, vol. 134, pp. 59–69.CrossRefGoogle Scholar
  22. 22.
    Abaqus 6.14 Documentation, 1st ed., Dassault Systems, Providence, USA, 2013.Google Scholar
  23. 23.
    T. Dickerson, Q. Shi, H.R. Shercliff: Proceedings of the Symposum on Frict. Stir Welding, USA, 2003, pp. 1–11.Google Scholar
  24. 24.
    R.H. Powell, C.Y. Ho, P.E. Liley: Thermal conductivity of selected metals, 1st ed., National Bureau of Standards, Washington, U.S., 1966, pp. 17–38.Google Scholar
  25. 25.
    B.G. Kıral, M. Tabanoğlu, H.T. Serindağ: Math. Comput. Appl., 2013, vol. 18, pp. 122–131.Google Scholar
  26. 26.
    M. Riahi, H. Nazari: Int. J. Adv. Manuf. Technol., 2011, vol. 55, pp. 143–152.CrossRefGoogle Scholar
  27. 27.
    V. Soundararajan, S. Zekovic, R. Kovacevic: Int. J. Mach. Tools Manuf., 2205, vol. 45, pp. 1577–87.Google Scholar
  28. 28.
    P.D. Desai: J. Phys. Chem. Ref. Data., 1986, vol. 15, pp. 967–983.CrossRefGoogle Scholar
  29. 29.
    M. Li, J. Brooks, D. Atteridge, W. Porter: Scr. Mater., 1997, vol. 36, pp. 1353–1359.CrossRefGoogle Scholar
  30. 30.
    A. De: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 119–24.CrossRefGoogle Scholar
  31. 31.
    T. Meek, Q. Han: Ultrasonic Processing of Materials (U.S. Department of Energy), 2006. https://www.osti.gov/scitech/servlets/purl/85931. Accessed June 2006.
  32. 32.
    B. Banerjee, A. Bhawalkar: J. Mech. Mater. Struct., 2008, vol. 3, pp. 391–424.CrossRefGoogle Scholar
  33. 33.
    R. Jain, S.K. Pal, S.B. Singh: J. Manuf. Process., 2016, vol. 23, pp. 278–286.CrossRefGoogle Scholar
  34. 34.
    J. Schmitz, B. Hallstedt, J. Brillo, I. Egry, M. Schick: J. Mater. Sci., 2012, vol. 47, pp. 3706–3712.CrossRefGoogle Scholar
  35. 35.
    J. Guo, J.Z. Zhu, and O.H. Lane: Int. Conf. Solidif. Process., 2007, pp. 549–53.Google Scholar
  36. 36.
    M.X. Xiong, J.Y.R. Liew: Thin-Walled Struct., 2016, vol. 98, pp. 169–176.CrossRefGoogle Scholar
  37. 37.
    M. De Strycker, L. Schueremans, W. Van Paepegem, D. Debruyne: Opt. Lasers Eng., 2010, vol. 48, pp. 978–986.CrossRefGoogle Scholar
  38. 38.
    W. Rohsenow, J. Hartnett, Y. Cho, Handbook of Heat Transfer, 3rd. ed., McGraw-Hill, New York, USA, 1998.Google Scholar
  39. 39.
    R. Fan, J. Magargee, P. Hu, J. Cao: Mater. Sci. Eng. A., 2013, vol. 574, pp. 218–225.CrossRefGoogle Scholar
  40. 40.
    B.G. Zhang, T. Wang, X.H. Duan, G.Q. Chen, J.C. Feng: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 398–403.CrossRefGoogle Scholar
  41. 41.
    V. Buchibabu, G.M. Reddy, A. De: J. Mater. Process. Technol., 2017, vol. 24, pp. 86–92.CrossRefGoogle Scholar
  42. 42.
    W. Kurz, D.J. Fisher, Fundamentals of solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1992.Google Scholar
  43. 43.
    S. Kou, JOM J. Miner. Met. Mater. Soc., 2003, vol. 55, pp. 37–42.CrossRefGoogle Scholar
  44. 44.
    J.I. Cho, C.W. Kim: Int. J. Met., 2014, vol. 8, pp. 49–55.Google Scholar
  45. 45.
    M. Hasegawa, M. Watabe, J. Phys. Soc. Japan., 1972, vol. 32, pp. 14–28.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • N. Jimenez-Mena
    • 1
  • P. J. Jacques
    • 1
  • J. M. Drezet
    • 2
  • A. Simar
    • 1
  1. 1.iMMC-IMAPUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.École Polytechnique Fédérale de Lausanne, IMXLausanneSwitzerland

Personalised recommendations