Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 2918–2928 | Cite as

Kinetics of Glass Transition and Crystallization of a Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 Bulk Metallic Glass with High Mixing Entropy

  • Pan Gong
  • Sibo Wang
  • Fangwei Li
  • Xinyun Wang
Article
  • 156 Downloads

Abstract

The kinetics of glass transition and crystallization of a novel Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 bulk metallic glass (BMG) with high mixing entropy have been studied by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The continuous DSC curves show five stages of crystallization at lower heating rates (≤ 20 K/min). The activation energies of glass transition were determined by Moynihan and Kissinger methods, while the activation energies of crystallization were calculated utilizing Kissinger, Ozawa, and Boswell models. The crystalline phases corresponding to each crystallization step have been found out. The kinetic fragility of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG has also been evaluated. Based on the isothermal DSC curves, the Avrami exponent, evaluated from the Johnson–Mehl–Avrami equation, has been analyzed in detail. The current study reveals that the crystallization behavior of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG exhibits characteristics of both the high entropy BMGs and traditional BMGs with a single principal element, leading to its high glass-forming ability.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51601063), the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51725504), the Basic Research Project of Shenzhen (Grant No. JCYJ20170307155718660), and the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. SKLTKF17B03). The authors are also grateful to the State Key Laboratory of Materials Processing and Die & Mould Technology and the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistance.

References

  1. 1.
    W.H. Wang, C. Dong, and C.H. Shek: Mater. Sci. Eng. R, 2004, vol. 44, pp. 45-89.CrossRefGoogle Scholar
  2. 2.
    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4067-109.CrossRefGoogle Scholar
  3. 3.
    K.F. Shamlaye, K.J. Laws, and J.F. Loffler: Acta Mater., 2017, vol. 128, pp.188-96.CrossRefGoogle Scholar
  4. 4.
    E. Perim, D. Lee, Y. Liu, C. Toher, P. Gong, Y. Li, W. Neal Simmons, O. Levy, JJ. Vlassak, J. Schroers, and S. Curtarolo: Nat. Commun., 2016, vol. 7, pp. 12315CrossRefGoogle Scholar
  5. 5.
    C. Chattopadhyay, and B.S. Murty: Scripta Mater., 2016, vol. 116, pp. 7-10.CrossRefGoogle Scholar
  6. 6.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, C.H. Tsau, and S.Y Chang: Adv. Eng. Mater., 2014, vol. 6, pp. 299-303.CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1-93.CrossRefGoogle Scholar
  8. 8.
    S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, pp.103505.CrossRefGoogle Scholar
  9. 9.
    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh JW (2011) Intermetallics, 19:1546-54.CrossRefGoogle Scholar
  10. 10.
    X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, and H.Y. Bai: J. Non-Cryst. Solids, 2011, vol. 357, pp.3557-60.CrossRefGoogle Scholar
  11. 11.
    H.Y. Ding, and K.F. Yao: J. Non-Cryst. Solids, 2013, vol. 364, 9-12.CrossRefGoogle Scholar
  12. 12.
    S.F. Zhao, Y. Shao, X. Liu, N. Chen, H.Y. Ding, and K.F. Yao: Mater. Des., 2015, vol. 87 pp. 625-31.CrossRefGoogle Scholar
  13. 13.
    T. Qi, Y. Li, A. Takeuchi, G. Xie, H. Miao, and W. Zhang: Intermetallics, 2015, vol. 66, pp. 8-12.CrossRefGoogle Scholar
  14. 14.
    C. Chen, S. Pang, T. Cheng, and T. Zhang: J Non-Cryst. Solids, 2015, vol. 410, pp. 39-42.CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, X. Yang, and P.K. Liaw: JOM, 2012, vol. 64, pp. 830-8.CrossRefGoogle Scholar
  16. 16.
    W.H. Wang: JOM, 2014, vol. 66, pp. 2067-77.CrossRefGoogle Scholar
  17. 17.
    M.H. Tsai, and J.W. Yeh: Mater. Res. Lett., 2014, vol. 2, pp. 107-23.CrossRefGoogle Scholar
  18. 18.
    K.N. Lad, R.T. Savalia, A. Pratap, G.K. Dey, and S. Banerjee: Thermochim. Acta, 2008, vol. 473, pp. 74-80.CrossRefGoogle Scholar
  19. 19.
    J. Cui, J.S. Li, J. Wang, H.C. Kou, J.C. Qiao, S. Gravier, and J.J. Blandin: J. Non-Cryst. Solids, 2014, vol. 404, pp. 7-12.CrossRefGoogle Scholar
  20. 20.
    H.Y. Jung, M. Stoica, S. Yi, D.H. Kim, and J. Eckert: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2415-21.CrossRefGoogle Scholar
  21. 21.
    P. Gong, S. Zhao, X. Wang, and K. Yao: Appl. Phys. A, 2015, vol. 120, pp. 145-153.CrossRefGoogle Scholar
  22. 22.
    A.A. Tsarkov, E.N. Zanaeva, A.Y. Churyumov, S.V. Ketov, and D.V. Louzguine-Luzgin: Mater. Charact., 2016, vol. 111, pp. 75-80.CrossRefGoogle Scholar
  23. 23.
    Z.F. Yao, J.C. Qiao, C. Zhang, J.M. Pelletier, and Y. Yao: J. Non-Cryst. Solids, 2015, vol. 415, pp. 42-50.CrossRefGoogle Scholar
  24. 24.
    P. Gong, K.F. Yao, and H.Y. Ding: Mater. Lett., 2015, vol. 156, pp.146-9.CrossRefGoogle Scholar
  25. 25.
    P. Gong, S. Zhao, H. Ding, K. Yao, and X. Wang: J. Mater. Res., 2015, vol. 30, pp. 2772-82.CrossRefGoogle Scholar
  26. 26.
    M. Lasocka: Mater. Sci., 1976, vol. 23, pp. 173-7.Google Scholar
  27. 27.
    S.X. Wang, S.G. Quan, and C. Dong: Thermochim. Acta, 2012, vol. 532, pp. 92-5.CrossRefGoogle Scholar
  28. 28.
    C.T. Moynihan: J. Am. Ceram. Soc., 1993, vol. 76, pp.1081-7.CrossRefGoogle Scholar
  29. 29.
    H.E. Kissinger: Anal. Chem. 1957, vol. 29, 1702-6.CrossRefGoogle Scholar
  30. 30.
    T. Ozawa: J. Bull. Chem. Soc. Jpn., 1965, vol. 38, pp.1881-6.CrossRefGoogle Scholar
  31. 31.
    P.G. Boswell: J. Therm. Anal. Calorim., 1980, vol. 18, pp. 353-8.CrossRefGoogle Scholar
  32. 32.
    Y. Li, W. Zhang, C. Dong, J. Qiang, and A. Inoue: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 445-9.CrossRefGoogle Scholar
  33. 33.
    N. Hua, W. Chen, X. Liu, and F. Yue: J. Non-Cryst. Solids, 2014, vol. 388, pp. 10-6.CrossRefGoogle Scholar
  34. 34.
    J. Tan, Y. Zhang, M. Stoica, U. Kuhn, N. Mattern, F.S. Pan, and J. Eckert: Intermetallics, 2011, vol. 19, pp. 567-571.CrossRefGoogle Scholar
  35. 35.
    L. Liu, Z.F. Wu, and J. Zhang: J. Alloys Compd., 2002, vol. 339, pp. 90-5.CrossRefGoogle Scholar
  36. 36.
    C. Peng, Z.H. Chen, X.Y. Zhao, A.L. Zhang, L.K. Zhang, and D. Chen: J. Non-Cryst. Solids, 2014, vol. 405, pp.7-11.CrossRefGoogle Scholar
  37. 37.
    W.K. An, A.H. Cai, J.H. Li, Y. Luo, T.L. Li, X. Xiong, Y. Liu, and Y. Pan: J. Non-Cryst. Solids, 2009, vol. 355, pp.1703-6.CrossRefGoogle Scholar
  38. 38.
    A.H. Cai, W.K. An, Y. Luo, T.L. Li, X.S. Li, X. Xiong, and Y. Liu: J. Alloys Compd., 2010, vol. 490, pp. 642-6.CrossRefGoogle Scholar
  39. 39.
    S. Cheng, C. Wang, M. Ma, D. Shan, and B. Guo: Thermochim. Acta, 2014, vol. 587, pp.11-7.CrossRefGoogle Scholar
  40. 40.
    C.A. Angell: Science, 1995, vol. 267, pp. 1924-35.CrossRefGoogle Scholar
  41. 41.
    M. Zhu, J.J. Li, L.J. Yao, Z.Y. Jian, F.E. Chang, and G.C. Yang: Thermochim. Acta, 2013, vol. 565, pp. 132-6.CrossRefGoogle Scholar
  42. 42.
    M.Q. Jiang, and L.H. Dai: Phys. Rev. B, 2007, vol. 76, pp. 054204.CrossRefGoogle Scholar
  43. 43.
    Q. Wang, J.M. Pelletier, L. Xia, H. Xu, and Y.D. Dong: J. Alloys Compd., 2006, vol. 413 pp. 181-7.CrossRefGoogle Scholar
  44. 44.
    D. Wang, H. Tan, and Y. Li: Acta Mater., 2005, vol. 53, pp. 2969-79.CrossRefGoogle Scholar
  45. 45.
    D. Okai, Y. Shimizu, N. Hirano, T. Fukami, T. Yamasaki, and A. Inoue: J. Alloys Compd., 2010, vol. 504, pp. S247-50.CrossRefGoogle Scholar
  46. 46.
    K.K. Song, P. Gargarella, S. Pauly, G.Z. Ma, U. Kuhn, and J. Eckert, J. Appl. Phys., 2012, vol. 112, pp. 063503.CrossRefGoogle Scholar
  47. 47.
    M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.CrossRefGoogle Scholar
  48. 48.
    M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-24.CrossRefGoogle Scholar
  49. 49.
    S. Ranganathan, and M. Von Heimendahl: J. Mater. Sci., 1981, vol. 16, pp. 2401-4.CrossRefGoogle Scholar
  50. 50.
    A. Calka, and A.P. Radinski: J. Mater. Res., 1985, vol. 3, pp. 59-63.CrossRefGoogle Scholar
  51. 51.
    S. Wei, B. Ding, T. Lei, and Z. Hu: Mater. Lett., 1998, vol. 37, pp. 263-7.CrossRefGoogle Scholar
  52. 52.
    E.J. Mittemeijer: J. Mater. Sci., 2004, vol. 39, pp. 1621-34.CrossRefGoogle Scholar
  53. 53.
    M. Yang, X.J. Liu, H.H. Ruan, Y. Wu, H. Wang, and Z.P. Lu: J. Appl. Phys., 2016, vol. 119, pp. 245112.CrossRefGoogle Scholar
  54. 54.
    G. Adam, and J.H. Gibbs: J. Chem. Phys., 1965, vol. 43, pp. 139-46.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Research Institute of Huazhong University of Science and Technology in ShenzhenShenzhenChina

Personalised recommendations