Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 2832–2842 | Cite as

Effects of Mode of Deformation and Extent of Reduction on Evolution of {111}-Fiber During Cold Rolling of Ni-16Cr Alloy

  • K. K. Mehta
  • R. K. Mandal
  • A. K. Singh


The high ratio of relative resolved shear stress on a twin to planar slip system results in microstructural latent hardening (some kind of overshooting) by the twin system on the primary slip planes, which leads to development of the {111}-fiber in Ni-16Cr alloy. The development of {111}-fiber starts as early as around 16 pct cold reduction in Ni-16Cr alloy and persists with maximum average intensity ranging from 35 to 40 pct additional deformation, i.e., around 50 pct cold reduction in unidirectional (U) and two-step cross (T)-rolling modes. In between 50 and 68 pct reductions in U and T modes, the fiber becomes unstable and starts disappearing. However, in multistep cross (M) rolling, the {111}-fiber formation starts late, i.e., at around 50 pct reduction, and maintains its stability up to additional deformation ranging from 35 to 40 pct, i.e., around 90 pct cold reduction. Thus, the life of {111}-fiber remains stable only within the range from 35 to 40 pct intermediate deformation during cold rolling of Ni-16Cr alloy irrespective of modes of rolling. However, the start and end of fiber stabilities depend on the modes of deformation by rolling. The maximum average intensity of {111}-fiber that can be attained in Ni-16Cr alloy is around 3.6× random in any of the deformation modes.



The authors are grateful to the Ministry of Defence, Government of India for financial support, and the Director, DMRL, Hyderabad for his constant encouragement. The authors extend their thanks to the Director, RDAQA, for many fruitful discussions.


  1. 1.
    1. R. K. Ray: Acta Metall. Mater., 1995, vol. 43, pp. 3861-3872.CrossRefGoogle Scholar
  2. 2.
    B. De Boer, N. Reger, B. Holzapfel, G. Gottstein, and D.A. Moldov (Eds.): First Joint International Conference on Recrystallisation and Grain Growth. Springer, Berlin, 2001b, pp. 1355–60.Google Scholar
  3. 3.
    3. V. S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz and B. Holzapfel: Mater. Sci. Engg. A, 2004, vol. 380, pp. 30-33.CrossRefGoogle Scholar
  4. 4.
    4. J. Hirsch, K. Lücke and M. Hartherly: Acta Metall., 1988, vol. 36, pp. 2905-2927.CrossRefGoogle Scholar
  5. 5.
    5. J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2883-2904.CrossRefGoogle Scholar
  6. 6.
    6. Y. Zhou, L. S. Toth and K. W. Neale: Acta Metall., 1992, vol. 40, pp. 3179-3193.CrossRefGoogle Scholar
  7. 7.
    7. T. Leffers and R. K. Ray: Progress in Materials Science, 2009, vol. 54, pp. 351-396.CrossRefGoogle Scholar
  8. 8.
    H. Hu, R. S. Cline, S. R. Goodman, and H. Margolin (eds.): Re-crystallization, Grain Growth and Textures. ASM International, Metals Park, OH, 1966.Google Scholar
  9. 9.
    9. T. Wakefield and M. Hatherly: Met. Sci, 1981, vol. 15, pp. 109-115.CrossRefGoogle Scholar
  10. 10.
    10. C. Bouysset and P. Coulomb: Mem. Sci. Rev. Metall, 1968, vol. 65, pp. 887-896.Google Scholar
  11. 11.
    11. M. Matsuo: ISIJ International, 1989, vol. 29, pp. 809-827.CrossRefGoogle Scholar
  12. 12.
    12. D. Raabe: J. Mater. Sci., 1995a, vol. 30, pp. 47-52.CrossRefGoogle Scholar
  13. 13.
    13. D. Raabe: Metall. Mater. Trans. A, 1995b, vol. 26A, pp. 991-998.CrossRefGoogle Scholar
  14. 14.
    14. T. Sakai, Y. Saito and K. Kato: Trans. ISIJ, 1987, vol. 27, pp. 520-525.CrossRefGoogle Scholar
  15. 15.
    15. W. Truszkowski, A. Latkowski and J. Krol: J. Memb. Science Rev. Met., 1966, vol. 63, pp. 951-958.Google Scholar
  16. 16.
    16. W. Truszkowski, J. Pospiech, M. Betzl and J. Jura: Proc. Fifth Int. Conf. Text. Mater., 1978, vol. 1, pp. 253-269.Google Scholar
  17. 17.
    17. J. Pospiech, J. Jura, A. Mucklich, K. Palik and M. Betzl: Text. Microstruct., 1983, vol. 6, pp. 63-80.CrossRefGoogle Scholar
  18. 18.
    18. M. Premkumar, V.S. Himabindu, S. Banumathy, A. Bhattacharjee and A.K. Singh: Mater. Sci. and Engg. A, 2012, vol. 552, pp. 15-23.CrossRefGoogle Scholar
  19. 19.
    19. L.G. Schultz: J. Appl. Phys., 1949, vol. 20, pp. 1030-1033.CrossRefGoogle Scholar
  20. 20.
    20. H. J. Bunge: Texture Analysis in Materials Science, Butterworth, London, 1982.Google Scholar
  21. 21.
    K.K. Mehta, P. Mukhopadhyay, R.K. Mandal, and A.K. Singh: Metall. Mater. Trans. A, vol. 46A, pp. 3656–69.Google Scholar
  22. 22.
    22.F. J. Humphreys, M. Hatherly: Recrystallisation and Related Phenomena. Elsevier., Oxford (2004).Google Scholar
  23. 23.
    23. J. Hirsch, E. Nes and K. Lucke: Acta Metall., 1987, vol. 35, pp. 427-438.CrossRefGoogle Scholar
  24. 24.
    24. T. Leffers: In: J. Grewen, G. Wassermann (Editors), Texture in Research and Practice, Springer, Berlin, Germany, 1969, pp. 351-396.Google Scholar
  25. 25.
    25. C. Bouysset, P. Coulomb: Mem. Sci. Rev. Metall., 1968, vol. 65, pp. 887-896.Google Scholar
  26. 26.
    26. B. J. Duggan, M. Hatherly, W. B. Hutchinson and P. T. Wakefield: Metal Sc., 1978, vol. 12, pp. 343-351.CrossRefGoogle Scholar
  27. 27.
    27. W. B. Hutchinson, B. J. Duggan and M. Hatherly: Metals Technol., 1979, vol. 6, pp. 398-403.CrossRefGoogle Scholar
  28. 28.
    28. H. Hu and R. Penelle: Scripta Metall Mater, 1991, vol. 25, pp. 377-382.CrossRefGoogle Scholar
  29. 29.
    29. G. D. Köhloff, H. Hu and K. Lücke: Textures Microstruct., 1991, vol. 14-18, pp. 1067-1072.CrossRefGoogle Scholar
  30. 30.
    H. Christoffersen, and T. Leffers: The relation between microstructure and crystallographic orientation in rolled copper and brass, Riso-R-1134 (EN)., 2002.
  31. 31.
    31. T. Kamijo, K. Sekine: Metall. Trans., 1970, vol. 1, pp. 1287-1292.CrossRefGoogle Scholar
  32. 32.
    32. A. Todoyama, H. Inagaki: Mat. Sci. Forum, 2005, vol. 495-497, pp. 603.CrossRefGoogle Scholar
  33. 33.
    33. I. L. Dillamore, W. T. Roberts: Acta Metall., 1964, vol.12, pp. 281-293.CrossRefGoogle Scholar
  34. 34.
    34. C. Mondal and A. K. Singh: Scripta Mater., 2012, vol. 66, pp. 674-677.CrossRefGoogle Scholar
  35. 35.
    35. A. Storoselsky and L. Anand: J. Mech. Phys. Solids, 1998. Vol. 46, pp. 671-696.CrossRefGoogle Scholar
  36. 36.
    36. S. Myagchilov and P. R. Dawson: Model Simul. Mater. Sci. technol., 1999, vol. 7, pp. 975-1004.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Defence Research and Development OrganizationKanchanbaghIndia
  2. 2.Department of Metallurgical EngineeringIIT (BHU)VaranasiIndia
  3. 3.Defence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations