Effects of Mode of Deformation and Extent of Reduction on Evolution of {111}-Fiber During Cold Rolling of Ni-16Cr Alloy
- 10 Downloads
Abstract
The high ratio of relative resolved shear stress on a twin to planar slip system results in microstructural latent hardening (some kind of overshooting) by the twin system on the primary slip planes, which leads to development of the {111}-fiber in Ni-16Cr alloy. The development of {111}-fiber starts as early as around 16 pct cold reduction in Ni-16Cr alloy and persists with maximum average intensity ranging from 35 to 40 pct additional deformation, i.e., around 50 pct cold reduction in unidirectional (U) and two-step cross (T)-rolling modes. In between 50 and 68 pct reductions in U and T modes, the fiber becomes unstable and starts disappearing. However, in multistep cross (M) rolling, the {111}-fiber formation starts late, i.e., at around 50 pct reduction, and maintains its stability up to additional deformation ranging from 35 to 40 pct, i.e., around 90 pct cold reduction. Thus, the life of {111}-fiber remains stable only within the range from 35 to 40 pct intermediate deformation during cold rolling of Ni-16Cr alloy irrespective of modes of rolling. However, the start and end of fiber stabilities depend on the modes of deformation by rolling. The maximum average intensity of {111}-fiber that can be attained in Ni-16Cr alloy is around 3.6× random in any of the deformation modes.
Notes
Acknowledgments
The authors are grateful to the Ministry of Defence, Government of India for financial support, and the Director, DMRL, Hyderabad for his constant encouragement. The authors extend their thanks to the Director, RDAQA, for many fruitful discussions.
References
- 1.1. R. K. Ray: Acta Metall. Mater., 1995, vol. 43, pp. 3861-3872.CrossRefGoogle Scholar
- 2.B. De Boer, N. Reger, B. Holzapfel, G. Gottstein, and D.A. Moldov (Eds.): First Joint International Conference on Recrystallisation and Grain Growth. Springer, Berlin, 2001b, pp. 1355–60.Google Scholar
- 3.3. V. S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz and B. Holzapfel: Mater. Sci. Engg. A, 2004, vol. 380, pp. 30-33.CrossRefGoogle Scholar
- 4.4. J. Hirsch, K. Lücke and M. Hartherly: Acta Metall., 1988, vol. 36, pp. 2905-2927.CrossRefGoogle Scholar
- 5.5. J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2883-2904.CrossRefGoogle Scholar
- 6.6. Y. Zhou, L. S. Toth and K. W. Neale: Acta Metall., 1992, vol. 40, pp. 3179-3193.CrossRefGoogle Scholar
- 7.7. T. Leffers and R. K. Ray: Progress in Materials Science, 2009, vol. 54, pp. 351-396.CrossRefGoogle Scholar
- 8.H. Hu, R. S. Cline, S. R. Goodman, and H. Margolin (eds.): Re-crystallization, Grain Growth and Textures. ASM International, Metals Park, OH, 1966.Google Scholar
- 9.9. T. Wakefield and M. Hatherly: Met. Sci, 1981, vol. 15, pp. 109-115.CrossRefGoogle Scholar
- 10.10. C. Bouysset and P. Coulomb: Mem. Sci. Rev. Metall, 1968, vol. 65, pp. 887-896.Google Scholar
- 11.11. M. Matsuo: ISIJ International, 1989, vol. 29, pp. 809-827.CrossRefGoogle Scholar
- 12.12. D. Raabe: J. Mater. Sci., 1995a, vol. 30, pp. 47-52.CrossRefGoogle Scholar
- 13.13. D. Raabe: Metall. Mater. Trans. A, 1995b, vol. 26A, pp. 991-998.CrossRefGoogle Scholar
- 14.14. T. Sakai, Y. Saito and K. Kato: Trans. ISIJ, 1987, vol. 27, pp. 520-525.CrossRefGoogle Scholar
- 15.15. W. Truszkowski, A. Latkowski and J. Krol: J. Memb. Science Rev. Met., 1966, vol. 63, pp. 951-958.Google Scholar
- 16.16. W. Truszkowski, J. Pospiech, M. Betzl and J. Jura: Proc. Fifth Int. Conf. Text. Mater., 1978, vol. 1, pp. 253-269.Google Scholar
- 17.17. J. Pospiech, J. Jura, A. Mucklich, K. Palik and M. Betzl: Text. Microstruct., 1983, vol. 6, pp. 63-80.CrossRefGoogle Scholar
- 18.18. M. Premkumar, V.S. Himabindu, S. Banumathy, A. Bhattacharjee and A.K. Singh: Mater. Sci. and Engg. A, 2012, vol. 552, pp. 15-23.CrossRefGoogle Scholar
- 19.19. L.G. Schultz: J. Appl. Phys., 1949, vol. 20, pp. 1030-1033.CrossRefGoogle Scholar
- 20.20. H. J. Bunge: Texture Analysis in Materials Science, Butterworth, London, 1982.Google Scholar
- 21.K.K. Mehta, P. Mukhopadhyay, R.K. Mandal, and A.K. Singh: Metall. Mater. Trans. A, vol. 46A, pp. 3656–69.Google Scholar
- 22.22.F. J. Humphreys, M. Hatherly: Recrystallisation and Related Phenomena. Elsevier., Oxford (2004).Google Scholar
- 23.23. J. Hirsch, E. Nes and K. Lucke: Acta Metall., 1987, vol. 35, pp. 427-438.CrossRefGoogle Scholar
- 24.24. T. Leffers: In: J. Grewen, G. Wassermann (Editors), Texture in Research and Practice, Springer, Berlin, Germany, 1969, pp. 351-396.Google Scholar
- 25.25. C. Bouysset, P. Coulomb: Mem. Sci. Rev. Metall., 1968, vol. 65, pp. 887-896.Google Scholar
- 26.26. B. J. Duggan, M. Hatherly, W. B. Hutchinson and P. T. Wakefield: Metal Sc., 1978, vol. 12, pp. 343-351.CrossRefGoogle Scholar
- 27.27. W. B. Hutchinson, B. J. Duggan and M. Hatherly: Metals Technol., 1979, vol. 6, pp. 398-403.CrossRefGoogle Scholar
- 28.28. H. Hu and R. Penelle: Scripta Metall Mater, 1991, vol. 25, pp. 377-382.CrossRefGoogle Scholar
- 29.29. G. D. Köhloff, H. Hu and K. Lücke: Textures Microstruct., 1991, vol. 14-18, pp. 1067-1072.CrossRefGoogle Scholar
- 30.H. Christoffersen, and T. Leffers: The relation between microstructure and crystallographic orientation in rolled copper and brass, Riso-R-1134 (EN). http://www.risoe.dk/rispubl/AFM/ris-r-1134.htm, 2002.
- 31.31. T. Kamijo, K. Sekine: Metall. Trans., 1970, vol. 1, pp. 1287-1292.CrossRefGoogle Scholar
- 32.32. A. Todoyama, H. Inagaki: Mat. Sci. Forum, 2005, vol. 495-497, pp. 603.CrossRefGoogle Scholar
- 33.33. I. L. Dillamore, W. T. Roberts: Acta Metall., 1964, vol.12, pp. 281-293.CrossRefGoogle Scholar
- 34.34. C. Mondal and A. K. Singh: Scripta Mater., 2012, vol. 66, pp. 674-677.CrossRefGoogle Scholar
- 35.35. A. Storoselsky and L. Anand: J. Mech. Phys. Solids, 1998. Vol. 46, pp. 671-696.CrossRefGoogle Scholar
- 36.36. S. Myagchilov and P. R. Dawson: Model Simul. Mater. Sci. technol., 1999, vol. 7, pp. 975-1004.CrossRefGoogle Scholar