Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 2597–2611 | Cite as

The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

  • Vadim Shterner
  • Ilana B. Timokhina
  • Anthony D. Rollett
  • Hossein Beladi


In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., 〈111〉, 〈110〉, and 〈100〉 parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, 〈111〉 and 〈100〉 were the most and the least favored orientations for the formation of mechanical twins, respectively. The 〈110〉 orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.



Professor B.C. De Cooman is gratefully acknowledged for providing the TWIP steel used for this study. The authors also acknowledge the technical and scientific support of the Deakin Advanced Characterization Facility. This study was supported by an Australian Research Grant (Grant No. FL0992361). ADR acknowledges the support of the U.S. AFOSR under Grant No. FA9550-16-1-0105.


  1. 1.
    B.C. De Cooman, L. Chen, Han Soo Kim, Y. Estrin, S.K. Kim, and H. Voswinckel: in Microstructure and Texture in Steels, A Haldar, Suwas S, and Bhattacharjee D, eds., Springer, London, 2009, pp. 165–83.CrossRefGoogle Scholar
  2. 2.
    B. De Cooman, K. Chin, and J. Kim: New Trends and Developments in Automotive Industry, Marcello Chiaberge, ed., InTech, 2011.Google Scholar
  3. 3.
    3. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.CrossRefGoogle Scholar
  4. 4.
    4. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.CrossRefGoogle Scholar
  5. 5.
    5. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier: Acta Mater., 2000, vol. 48, pp. 1345–59.CrossRefGoogle Scholar
  6. 6.
    O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 246–49.Google Scholar
  7. 7.
    S. Allain, J.P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 143–47.Google Scholar
  8. 8.
    S. Allain, J.P. Chateau, D. Dahmoun, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 272–76.Google Scholar
  9. 9.
    R.E. Reed-Hill: Phys. Metall. Princ., 1964.Google Scholar
  10. 10.
    F.D. Fischer, T. Schaden, F. Appel, and H. Clemens: Eur. J. Mech. A/Solids, 2003, vol. 22, pp. 709–26.CrossRefGoogle Scholar
  11. 11.
    J.P. Hirth and J. Lothe: Theory of Dislocations, 1982.Google Scholar
  12. 12.
    12. J.A. Venables: Phil. Mag., 1961, vol. 6, pp. 379–96.CrossRefGoogle Scholar
  13. 13.
    13. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Vallev, and D.V. Gunderov: Appl. Phys. Lett., 2004, vol. 84, pp. 592–94.CrossRefGoogle Scholar
  14. 14.
    14. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–60.CrossRefGoogle Scholar
  15. 15.
    15. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige: Scripta Mater., 2008, vol. 59, pp. 963–66.CrossRefGoogle Scholar
  16. 16.
    16. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.CrossRefGoogle Scholar
  17. 17.
    17. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.CrossRefGoogle Scholar
  18. 18.
    18. D.Z. Li, Y.H. Wei, C.Y. Liu, L.F. Hou, D.F. Liu, and X.Z. Jin: J. Iron Steel Res. Int., 2010, vol. 17, pp. 67–73.CrossRefGoogle Scholar
  19. 19.
    19. H. Beladi, P. Cizek, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 1482–92.CrossRefGoogle Scholar
  20. 20.
    20. S. Sato, E.P. Kwon, M. Imafuku, K. Wagatsuma, and S. Suzuki: Mater. Charact., 2011, vol. 62, pp. 781–88.CrossRefGoogle Scholar
  21. 21.
    A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 184–87.Google Scholar
  22. 22.
    22. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.CrossRefGoogle Scholar
  23. 23.
    23. A. Soulami, K.S. Choi, Y.F. Shen, W.N. Liu, X. Sun, and M.A. Khaleel: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1402–08.CrossRefGoogle Scholar
  24. 24.
    S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 158–62.Google Scholar
  25. 25.
    25. H. Beladi, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2014, vol. 70, pp. 281–89.CrossRefGoogle Scholar
  26. 26.
    26. H. Beladi and G.S. Rohrer: Acta Mater., 2013, vol. 61, pp. 1404–12.CrossRefGoogle Scholar
  27. 27.
    27. G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, and P. Wynblatt: Z. Metallkd., 2004, vol. 95, pp. 197–214.CrossRefGoogle Scholar
  28. 28.
    28. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé: Phil. Mag., 2010, vol. 90, pp. 2161–90.CrossRefGoogle Scholar
  29. 29.
    29. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein and C.N. Tomé: Acta Mater., 2009, vol. 57, pp. 6047–56.CrossRefGoogle Scholar
  30. 30.
    T. Hildich, H. Beladi, P. Hodgson, and N. Stanford: Elsevier, Kidlington, ROYAUME-UNI, 2012.Google Scholar
  31. 31.
    V. Shterner: Ph.D. Thesis, Deakin University, Australia, 2015.Google Scholar
  32. 32.
    32. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, Oxford Engineering Science Series 1993, Oxford University Press, New York, NY, 1993.Google Scholar
  33. 33.
    33. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed–Akbari, T. Hickel, F. Roters, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 494–510.CrossRefGoogle Scholar
  34. 34.
    34. J.A. Venables: Phil. Mag., 1974, vol. 30, pp. 1165–69.CrossRefGoogle Scholar
  35. 35.
    35. J.B. Cohen and J. Weertman: Acta Metall., 1963, vol. 11, pp. 996–98.CrossRefGoogle Scholar
  36. 36.
    36. H. Fujita and T. Mori: Scripta Metall., 1975, vol. 9, pp. 631–36.CrossRefGoogle Scholar
  37. 37.
    37. P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang: Scripta Mater., 2006, vol. 55, pp. 629–31.CrossRefGoogle Scholar
  38. 38.
    38. L. Meng, P. Yang, Q. Xie, H. Ding, and Z. Tang: Scripta Mater., 2007, vol. 56, pp. 931–34.CrossRefGoogle Scholar
  39. 39.
    39. H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. De Cooman, and S.K. Kim: Acta Mater., 2011, vol. 59, pp. 7787–99.CrossRefGoogle Scholar
  40. 40.
    S. Miura, J. Takamura, and N. Narita: Trans. JIM, 1968, vol. 9.Google Scholar
  41. 41.
    41. A.A. Saleh, A.A. Gazder, and E.V. Pereloma: Trans. Ind. Inst. Met., 2013, vol. 66, pp. 621–29.CrossRefGoogle Scholar
  42. 42.
    42. A.A. Saleh, E.V. Pereloma, B. Clausen, D.W. Brown, C.N. Tomé, and A.A. Gazder: Mater. Sci. Eng. A, 2014, vol. 589, pp. 66–75.CrossRefGoogle Scholar
  43. 43.
    S. Mahajan: in Encyclopedia of Materials: Science and Technology, K.H. Jürgen Buschow, R.W. Cahn, Merton C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, eds., Elsevier, Oxford, 2002, pp. 1–14.Google Scholar
  44. 44.
    44. M. Sachtleber, Z. Zhao, and D. Raabe: Mater. Sci. Eng. A, 2002, vol. 336, pp. 81–87.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Vadim Shterner
    • 1
  • Ilana B. Timokhina
    • 1
  • Anthony D. Rollett
    • 2
  • Hossein Beladi
    • 1
  1. 1.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations