Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

  • M. Ajay Krishnan
  • V. S. Raja
  • Shweta Shukla
  • S. M. Vaidya
Article
  • 44 Downloads

Abstract

This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as ~ 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10−7 s−1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

Notes

Acknowledgments

One of the authors (MAK) acknowledges the financial support and other facilities provided by M/s Godrej Aerospace, the Science and Engineering Research Board (SERB), and the Confederation of Indian Industries (CII) under the Prime Minister’s fellowship scheme. MAK is thankful to Mr. Ankit Kothari for his help and support in the specimen fabrication. The authors thankfully acknowledge Dr. James Moran and Mr. Peter Vanderburgh, ALCOA, for providing the AA 7085 alloy, and CRNTS, IIT Bombay, for providing the microscopy facilities.

Competing Financial Interests

The authors declare that there is a competing financial interest. The proposed work is from a pending patent with International Application No. PCT/IN2016/000280(2016) filed by Godrej Aerospace and the Indian Institute of Technology Bombay. The authors AJK, VSR, and SMV are inventors in the patent.

References

  1. 1.
    1.M.B. Kannan, V.S. Raja, and A.K. Mukhopadhyay: Scripta Mater., 2004, vol. 51, pp. 1075–79.CrossRefGoogle Scholar
  2. 2.
    2.M. Bobby Kannan, R. Raman, A. Mukhopadhyay, and V. Raja: Corrosion, 2003, vol. 59, pp. 881–89.CrossRefGoogle Scholar
  3. 3.
    M.B. Kannan and V.S. Raja: Corros. Rev., 2009, vol. 27, pp. 147—80.CrossRefGoogle Scholar
  4. 4.
    4.J.S. Warner, S. Kim, and R.P. Gangloff: Int. J. Fatigue, 2009, vol. 31, pp. 1952–65.CrossRefGoogle Scholar
  5. 5.
    5.J.T. Burns, S. Kim, and R.P. Gangloff: Corros. Sci., 2010, vol. 52, pp. 498–508.CrossRefGoogle Scholar
  6. 6.
    6.M. Bobby Kannan and V.S. Raja.: J. Mater. Sci., 2006, vol. 41, pp. 5495–99.CrossRefGoogle Scholar
  7. 7.
    7.I. Polmear: Mater. Forum, 2004, vol. 28, pp. 1–14.Google Scholar
  8. 8.
    8.S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch: Corros. Sci., 2010, vol. 52, pp. 4073–80.CrossRefGoogle Scholar
  9. 9.
    9.S.S. Kale, V.S. Raja, and A.K. Bakare: Corros. Sci., 2013, vol. 75, pp. 318–25.CrossRefGoogle Scholar
  10. 10.
    10.R. Goswami, S. Lynch, N.J.H. Holroyd, S.P. Knight, and R.L. Holtz: Metall. Mater. Trans. A, 2013, vol. 44A, p. 1268.CrossRefGoogle Scholar
  11. 11.
    11.S.P. Knight, K. Pohl, N.J.H. Holroyd, N. Birbilis, P.A. Rometsch, B.C. Muddle, R. Goswami, and S.P. Lynch: Corros. Sci., 2015, vol. 98, pp. 50–62.CrossRefGoogle Scholar
  12. 12.
    12.J.C. Lin, H.L. Liao, W.D. Jehng, C.H. Chang, and S.L. Lee: Corros. Sci., 2006, vol. 48, pp. 3139–56.CrossRefGoogle Scholar
  13. 13.
    13.A.K. Mukhopadhyay, K.S. Prasad, V. Kumar, G.M. Reddy, S.V. Kamat, and V.K. Varma: Mater. Sci. Forum, 2006, vols. 519–521, pp. 315–20.CrossRefGoogle Scholar
  14. 14.
    14.T.C. Tsai and T.H. Chuang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2617–27.CrossRefGoogle Scholar
  15. 15.
    15.S. Wang, I. Huang, L. Yang, J. Jiang, and J. Chen: J. Electrochem. Soc., 2015, vol. 162, pp. 150–60.CrossRefGoogle Scholar
  16. 16.
    16.L.P. Huang, K.H. Chen, S. Li, and M. Song: Scripta Mater., 2007, vol. 56, pp. 305–08.CrossRefGoogle Scholar
  17. 17.
    17.D.K. Xu, N. Birbilis, and P.A. Rometsch: Corrosion, 2012, vol. 68, pp. 1–10Google Scholar
  18. 18.
    18.Y. Reda, R. Abdel Karim, and I. Elmahallawi: Mater. Sci. Eng. A, 2008, vol. 485, pp. 468–75.CrossRefGoogle Scholar
  19. 19.
    19.J.S. Robinson: Mater. Sci. Technol., 2003, vol. 19, pp. 1697–1704.CrossRefGoogle Scholar
  20. 20.
    20.C.P. Ferrer, M.G. Koul, B.J. Connolly, and A.L. Moran: Corrosion, 2003, vol. 59, pp. 520–28.CrossRefGoogle Scholar
  21. 21.
    21.B. Cina: Metall. Mater. Trans. A, 1989, vol. 20, pp. 2087–92.Google Scholar
  22. 22.
    A.F. Oliveira, M.C. De Barros, K.R. Cardoso, and D.N. Travessa: Materials Science and Engineering: A, 2004, vol. 379, pp. 321–26.CrossRefGoogle Scholar
  23. 23.
    23.T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Acta Mater., 2010, vol. 58, pp. 4814–26.CrossRefGoogle Scholar
  24. 24.
    24.G. Sha and A. Cerezo: Acta Mater., 2004, vol. 52, pp. 4503–16.CrossRefGoogle Scholar
  25. 25.
    25.L.K. Berg, D. Schryvers, and L.R. Wallenberg: Acta Mater., 2001, vol. 4, pp. 3443–51.CrossRefGoogle Scholar
  26. 26.
    26.A. Deschamps, Y. Bréchet, and F. Livet: Mater. Sci. Technol., 1999, vol. 15, pp. 993–1000.CrossRefGoogle Scholar
  27. 27.
    M. Ajay Krishnan, V.S. Raja, and S.M. Vaidya: PCT/IN2016/000280, 2016.Google Scholar
  28. 28.
    “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8, ASTM, Philadelphia, PA, 2009.Google Scholar
  29. 29.
    29.M.D. Pustode, V.S. Raja, and N. Paulose: Corros. Sci., 2014, vol. 82, pp. 191–96.CrossRefGoogle Scholar
  30. 30.
    “Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens,” ASTM G1-03, ASTM, Philadelphia, PA, 2012.Google Scholar
  31. 31.
    31.D. Najjar, T. Magnin, and T. Warner: Mater. Sci. Eng. A, 1997, vol. 238, pp. 293–302.CrossRefGoogle Scholar
  32. 32.
    32.Y.J. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 2008, vol. 39A, pp. 1449–65.CrossRefGoogle Scholar
  33. 33.
    33.T.S.T. Sudharshan: Eng. Fract. Mech., 1990, vol. 37, pp. 569–89.CrossRefGoogle Scholar
  34. 34.
    34.M. Dixit, R.S. Mishra, and K.K. Sankaran: Mater. Sci. Eng. A, 2008, vol. 478, pp. 163–72.CrossRefGoogle Scholar
  35. 35.
    35.N.M. Han, X.M. Zhang, S.D. Liu, D.G. He, and R. Zhang: J. Alloys Compd., 2011, vol. 509, pp. 4138–45.CrossRefGoogle Scholar
  36. 36.
    36.M.B. Kannan, V.S. Raja, A.K. Mukhopadhyay, P. Schmuki, and R. Fujii: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3257–62.CrossRefGoogle Scholar
  37. 37.
    37.A.K. Vasudevan and K. Sadananda: Metall. Mater. Trans. A, 2010, vol. 42A, pp. 405–14.Google Scholar
  38. 38.
    38.K. Sadananda and A.K. Vasudevan: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 279–95.CrossRefGoogle Scholar
  39. 39.
    39.J.S. Warner and R.P. Gangloff: Int. J. Fatigue, 2012, vol. 42, pp. 35–44.CrossRefGoogle Scholar
  40. 40.
    40.T. Ramgopal, P. Schmutz, and G.S. Frankel: J. Electrochem. Soc., 2001, vol. 148, p. B348.CrossRefGoogle Scholar
  41. 41.
    41.N. Birbilis and R.G. Buchheit: J. Electrochem. Soc., 2005, vol. 152, p. B140.CrossRefGoogle Scholar
  42. 42.
    42.G.M. Scamans: J. Mater. Sci., 1978, vol. 13, pp. 27–36.CrossRefGoogle Scholar
  43. 43.
    D.A. Hardwick, A.W. Thompson, and I.M. Bernstein: Metallurgical Transactions A, 1983, vol. 14, pp. 2517–26.CrossRefGoogle Scholar
  44. 44.
    44.T.D. Burleigh: Corrosion, 1991, vol. 47, pp. 89–98.CrossRefGoogle Scholar
  45. 45.
    45.K.R. Cooper and R.G. Kelly: Corros. Sci., 2007, vol. 49, pp. 2636–62.CrossRefGoogle Scholar
  46. 46.
    46.Q. Meng and G.S. Frankel: J. Electrochem. Soc., 2004, vol. 151, p. B271.CrossRefGoogle Scholar
  47. 47.
    47.C.B. Crane and R.P. Gangloff: Corrosion, 2016, vol. 72, pp. 242–63.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • M. Ajay Krishnan
    • 1
  • V. S. Raja
    • 1
  • Shweta Shukla
    • 1
  • S. M. Vaidya
    • 2
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  2. 2.Godrej AerospaceMumbaiIndia

Personalised recommendations