Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes

  • Ashutosh Panchal
  • U. Ravi Kiran
  • T. K. Nandy
  • A. K. Singh
Article
  • 8 Downloads

Abstract

Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength (σYS) continuously increases with increase in W content in both the alloys. The σYS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength (σUTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress–true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided by DRDO and The Director, Defence Metallurgical Research Laboratory for his kind encouragements. The authors also thank members of Analytical Chemistry, Electron Microscopy, Mechanical Behavior, Mechanical Engineering, and Powder Metallurgy Groups of DMRL for their kind help.

References

  1. 1.
    A. Upadhyaya: Material Chemistry and Physics, 2001, vol. 67, pp. 101-110.CrossRefGoogle Scholar
  2. 2.
    W. Lanz, W. Odermett, G. Whelraunch: Kinetic energy projectiles: development history, state of the art, trends, 19th International Symposium on blastic, Interlaken, Switzerland. 2001.Google Scholar
  3. 3.
    Y. Sahin: Journal of Powder Technology, 2014,  https://doi.org/10.1155/2014/764306.Google Scholar
  4. 4.
    C. Heeman, M. Susan, Abkowitz: Journal of Alloys and Compounds, 2005, vol.390, pp. 62-66.CrossRefGoogle Scholar
  5. 5.
    Zhang Ke, Ge Chang Chun: Materials Science Forum, 2007, vols. 534-536, pp. 1285-1288.Google Scholar
  6. 6.
    A.C. Young, O.O. Omatete, M.A. Janney, P.A. Menchhofer: J. Am. Ceram. Soc., 1991, vol. 74 (3), pp. 612-618.CrossRefGoogle Scholar
  7. 7.
    M.A. Janney: U.S. Pat. No. 4,894,194, 1990.Google Scholar
  8. 8.
    M.A. Janney and O.O. Omatete: U.S. Pat. No. 5,028,362, 1991.Google Scholar
  9. 9.
    O.O. Omatete, M.A. Janney, and R.A. Strehlow: American Ceramic Society Bulletin, 1991, vol. 70(10), pp. 1641-1649.Google Scholar
  10. 10.
    A. Panchal and U. Ravi Kiran: Tech. Rep., DRDO-DMRL-PMG-094, 2015Google Scholar
  11. 11.
    H.S. Song and E.P. Kim: U.S. Pat. No. 5,956,559, 1999.Google Scholar
  12. 12.
    K.T. Ramesh, R.S. Coates: Metall. Trans. A, 1992, vol. 23A, pp. 2625-2630.CrossRefGoogle Scholar
  13. 13.
    X. Gong, J.L. Fan, F. Ding: Int. J. Refract. Hard Mater, 2012, vol. 30, pp. 71-77.CrossRefGoogle Scholar
  14. 14.
    U. Ravi Kiran, A. Panchal, M. Sankarnarayana, T.K. Nandy: Mater. Sci. Eng. A, 2015, vol. 640, pp. 82-90CrossRefGoogle Scholar
  15. 15.
    ASTM E8M-04, Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, 2005, vol. 03.01, pp. 86–109.Google Scholar
  16. 16.
    K. Eun-Pyo, H. Moon-Hee, H.I. Moon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 627-632.Google Scholar
  17. 17.
    R.M. German, A. Bose and S.S. Mani: Metall. Trans. A, 1992, vol. 23A, pp. 211-219.CrossRefGoogle Scholar
  18. 18.
    R.M. German, L.L. Bourguignon, B.H. Rabin: J. Met., 1985, vol. 37, no. 8, pp. 36-39.Google Scholar
  19. 19.
    A. Kumari, M. Sankarnarayana, T.K. Nandy: Int. J. Refract. Hard Mater, 2017, Vol. 67, pp. 18-31.CrossRefGoogle Scholar
  20. 20.
    R.M. German: Metall. Trans. A, 1985, vol. 16A, pp. 1247–1252.CrossRefGoogle Scholar
  21. 21.
    S. Humail, F. Akhtar, S.J. Askari: Int. J. Refract. Hard Mater, 2007, Vol. 25, pp. 380–385.CrossRefGoogle Scholar
  22. 22.
    M. Yousuf, P.C. Sahu, H.K. Jajoo, S. Rajagopalan and K. GovindRajan: J. Phys. F, 1986, vol. 16, pp. 373-380.CrossRefGoogle Scholar
  23. 23.
    L. Delehouzee, A. Deruyttere: Acta metall., 1967, vol. 15, pp. 727-734.CrossRefGoogle Scholar
  24. 24.
    B. Katavic, Z. Odanovic, M. Burzic: Mater. Sci. Eng. A, 2008, vol. 492, pp. 337–345.CrossRefGoogle Scholar
  25. 25.
    M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399-424.CrossRefGoogle Scholar
  26. 26.
    S.H. Hong and H.J. Ryu: Mater. Sci. Eng. A, 2003, vol. 344, no. 1-2, pp. 253–260.CrossRefGoogle Scholar
  27. 27.
    R.M. German and L.L. Bourguignon: Proc. Semin. Powder Metall. Def. Technol. 1984, pp. 117–131.Google Scholar
  28. 28.
    J. Das, U. Ravi Kiran, N. EswaraPrasad: Int. J. Refract. Hard Mater, 2009, Vol. 27, pp. 577-583.CrossRefGoogle Scholar
  29. 29.
    U. Ravi Kiran, A. Panchal, T.K. Nandy: Int. J. Refract. Hard Mater, 2013, Vol. 37, pp. 1-11.CrossRefGoogle Scholar
  30. 30.
    K.S. Churn, R.M. German: Metall. Trans. A, 1984, vol. 15A, pp. 331– 338.CrossRefGoogle Scholar
  31. 31.
    G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1988.Google Scholar
  32. 32.
    D.C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825-2828.CrossRefGoogle Scholar
  33. 33.
    S. Banumathy, R.K. Mandal, and A.K. Singh: Int. J. Mat. Res., 2011, vol. 102, pp. 208-217.CrossRefGoogle Scholar
  34. 34.
    K. K. Mehta, P. Mukhopadhyay, R. K. Mandal, and A. K. Singh: Mater. Char., 2015, vol. 110, pp. 175-191.CrossRefGoogle Scholar
  35. 35.
    K. K. Mehta, P. Mukhopadhyay, R. K. Mandal and A. K. Singh: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3493–3504.CrossRefGoogle Scholar
  36. 36.
    C.W. Shao, F. Shi, W.W. Guo and X.W. Li: Metall. Trans., 2015, vol. 56, pp. 46 – 53.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Ashutosh Panchal
    • 1
  • U. Ravi Kiran
    • 1
  • T. K. Nandy
    • 1
  • A. K. Singh
    • 1
  1. 1.Defence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations