Skip to main content
Log in

Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength (σYS) continuously increases with increase in W content in both the alloys. The σYS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength (σUTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress–true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Upadhyaya: Material Chemistry and Physics, 2001, vol. 67, pp. 101-110.

    Article  CAS  Google Scholar 

  2. W. Lanz, W. Odermett, G. Whelraunch: Kinetic energy projectiles: development history, state of the art, trends, 19th International Symposium on blastic, Interlaken, Switzerland. 2001.

    Google Scholar 

  3. Y. Sahin: Journal of Powder Technology, 2014, https://doi.org/10.1155/2014/764306.

    Article  Google Scholar 

  4. C. Heeman, M. Susan, Abkowitz: Journal of Alloys and Compounds, 2005, vol.390, pp. 62-66.

    Article  Google Scholar 

  5. Zhang Ke, Ge Chang Chun: Materials Science Forum, 2007, vols. 534-536, pp. 1285-1288.

    Google Scholar 

  6. A.C. Young, O.O. Omatete, M.A. Janney, P.A. Menchhofer: J. Am. Ceram. Soc., 1991, vol. 74 (3), pp. 612-618.

    Article  CAS  Google Scholar 

  7. M.A. Janney: U.S. Pat. No. 4,894,194, 1990.

  8. M.A. Janney and O.O. Omatete: U.S. Pat. No. 5,028,362, 1991.

  9. O.O. Omatete, M.A. Janney, and R.A. Strehlow: American Ceramic Society Bulletin, 1991, vol. 70(10), pp. 1641-1649.

    CAS  Google Scholar 

  10. A. Panchal and U. Ravi Kiran: Tech. Rep., DRDO-DMRL-PMG-094, 2015

  11. H.S. Song and E.P. Kim: U.S. Pat. No. 5,956,559, 1999.

  12. K.T. Ramesh, R.S. Coates: Metall. Trans. A, 1992, vol. 23A, pp. 2625-2630.

    Article  CAS  Google Scholar 

  13. X. Gong, J.L. Fan, F. Ding: Int. J. Refract. Hard Mater, 2012, vol. 30, pp. 71-77.

    Article  CAS  Google Scholar 

  14. U. Ravi Kiran, A. Panchal, M. Sankarnarayana, T.K. Nandy: Mater. Sci. Eng. A, 2015, vol. 640, pp. 82-90

    Article  CAS  Google Scholar 

  15. ASTM E8M-04, Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, 2005, vol. 03.01, pp. 86–109.

  16. K. Eun-Pyo, H. Moon-Hee, H.I. Moon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 627-632.

    Google Scholar 

  17. R.M. German, A. Bose and S.S. Mani: Metall. Trans. A, 1992, vol. 23A, pp. 211-219.

    Article  CAS  Google Scholar 

  18. R.M. German, L.L. Bourguignon, B.H. Rabin: J. Met., 1985, vol. 37, no. 8, pp. 36-39.

    CAS  Google Scholar 

  19. A. Kumari, M. Sankarnarayana, T.K. Nandy: Int. J. Refract. Hard Mater, 2017, Vol. 67, pp. 18-31.

    Article  CAS  Google Scholar 

  20. R.M. German: Metall. Trans. A, 1985, vol. 16A, pp. 1247–1252.

    Article  CAS  Google Scholar 

  21. S. Humail, F. Akhtar, S.J. Askari: Int. J. Refract. Hard Mater, 2007, Vol. 25, pp. 380–385.

    Article  CAS  Google Scholar 

  22. M. Yousuf, P.C. Sahu, H.K. Jajoo, S. Rajagopalan and K. GovindRajan: J. Phys. F, 1986, vol. 16, pp. 373-380.

    Article  CAS  Google Scholar 

  23. L. Delehouzee, A. Deruyttere: Acta metall., 1967, vol. 15, pp. 727-734.

    Article  CAS  Google Scholar 

  24. B. Katavic, Z. Odanovic, M. Burzic: Mater. Sci. Eng. A, 2008, vol. 492, pp. 337–345.

    Article  Google Scholar 

  25. M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399-424.

    Article  CAS  Google Scholar 

  26. S.H. Hong and H.J. Ryu: Mater. Sci. Eng. A, 2003, vol. 344, no. 1-2, pp. 253–260.

    Article  Google Scholar 

  27. R.M. German and L.L. Bourguignon: Proc. Semin. Powder Metall. Def. Technol. 1984, pp. 117–131.

  28. J. Das, U. Ravi Kiran, N. EswaraPrasad: Int. J. Refract. Hard Mater, 2009, Vol. 27, pp. 577-583.

    Article  CAS  Google Scholar 

  29. U. Ravi Kiran, A. Panchal, T.K. Nandy: Int. J. Refract. Hard Mater, 2013, Vol. 37, pp. 1-11.

    Article  Google Scholar 

  30. K.S. Churn, R.M. German: Metall. Trans. A, 1984, vol. 15A, pp. 331– 338.

    Article  CAS  Google Scholar 

  31. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1988.

    Google Scholar 

  32. D.C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825-2828.

    Article  CAS  Google Scholar 

  33. S. Banumathy, R.K. Mandal, and A.K. Singh: Int. J. Mat. Res., 2011, vol. 102, pp. 208-217.

    Article  CAS  Google Scholar 

  34. K. K. Mehta, P. Mukhopadhyay, R. K. Mandal, and A. K. Singh: Mater. Char., 2015, vol. 110, pp. 175-191.

    Article  CAS  Google Scholar 

  35. K. K. Mehta, P. Mukhopadhyay, R. K. Mandal and A. K. Singh: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3493–3504.

    Article  Google Scholar 

  36. C.W. Shao, F. Shi, W.W. Guo and X.W. Li: Metall. Trans., 2015, vol. 56, pp. 46 – 53.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by DRDO and The Director, Defence Metallurgical Research Laboratory for his kind encouragements. The authors also thank members of Analytical Chemistry, Electron Microscopy, Mechanical Behavior, Mechanical Engineering, and Powder Metallurgy Groups of DMRL for their kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Additional information

Manuscript submitted November 2, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchal, A., Ravi Kiran, U., Nandy, T.K. et al. Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes. Metall Mater Trans A 49, 2084–2098 (2018). https://doi.org/10.1007/s11661-018-4590-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4590-7

Navigation