Skip to main content
Log in

Effect of Starting As-cast Structure on the Microstructure–Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effect of the initial as-cast structure on the microstructure–texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having ‘columnar,’ ‘equiaxed,’ and a mixture of ‘columnar’ and ‘equiaxed’ grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely ‘equiaxed’ starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed ‘columnar-equiaxed’ grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Patra and L. K. Singhal: Mater. Sci. Appl., 2013, vol. 4, pp. 70–76.

    CAS  Google Scholar 

  2. C. Zhang, Z. Liu, and G. Wang: J. Mater. Process. Technol., 2011, vol. 211, pp. 1051–59.

    Article  CAS  Google Scholar 

  3. G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee, and K. S. Lee: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159–65.

    Article  Google Scholar 

  4. Y. Yazawa, Y. Ozaki, Y. Kato, and O. Furukimi: JSAE Rev., 2003, vol. 24, pp. 483–88.

    Article  CAS  Google Scholar 

  5. N. Fujita, K. Ohmura, and A. Yamamoto: Mater. Sci. Eng. A, 2003, vol. 351, pp. 272–81.

    Article  Google Scholar 

  6. V. Kuzucu, M. Aksoy, M.H. Korkut, and M.M. Yildirim: Mater. Sci. Eng. A, 1997, vol. 230, pp. 75–80.

    Article  Google Scholar 

  7. R. N. Wright: Metall. Trans., 1972, vol. 3, pp. 83–91.

    Article  CAS  Google Scholar 

  8. J. Han, H. Li, and H. Xu: Mater. Des., 2014, vol. 58, pp. 518–26.

    Article  CAS  Google Scholar 

  9. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Mater. Des., 2016, vol. 89, pp. 626–35.

    Article  CAS  Google Scholar 

  10. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Mater. Des., 2015, vol. 65, pp. 682–89.

    Article  CAS  Google Scholar 

  11. J. Han, H. Li, Z. Zhu, F. Barbaro, L. Jiang, H. Xu, and L. Ma: Mater. Des., 2014, vol. 63, pp. 238–46.

    Article  CAS  Google Scholar 

  12. M. Alizadeh-Sh, S.P.H. Marashi, and M. Pouranvari: Mater. Des., 2014, vol. 56, pp. 258–63.

    Article  CAS  Google Scholar 

  13. F. Gao, Z. Liu, H. Liu, and G. Wang: Mater. Charact., 2013, vol. 75, pp. 93–100.

    Article  CAS  Google Scholar 

  14. S. V. Mehtonen, E. J. Palmiere, R. D K Misra, L. P. Karjalainen, and D. A. Porter: Mater. Sci. Eng. A, 2014, vol. 601, pp. 7–19.

    Article  CAS  Google Scholar 

  15. J. Shu, H. Bi, X. Li, and Z. Xu: J. Mater. Process. Technol., 2012, vol. 212, pp. 59–65.

    Article  CAS  Google Scholar 

  16. H. F G De Abreu, A. D S Bruno, S. S M Tavares, R. P. Santos, and S. S. Carvalho: Mater. Charact., 2006, vol. 57, pp. 342–47.

    Article  Google Scholar 

  17. H. J. Shin, J. K. An, S. H. Park, and D. N. Lee: Acta Mater., 2003, vol. 51, pp. 4693–4706.

    Article  CAS  Google Scholar 

  18. R. P. Siqueira, H. R.Z. Sandim, T. R. Oliveira, and D. Raabe: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3513–19.

    Article  Google Scholar 

  19. X.-Y. Fang, W.-G. Wang, H. Guo, C.-X. Qin, and B.-X. Zhou: J. Cent. South Univ., 2012, vol. 19, pp. 3363–68.

    Article  CAS  Google Scholar 

  20. P. D. Wu, H. Jin, Y. Shi, and D. J. Lloyd: Mater. Sci. Eng. A, 2006, vol. 423, pp. 300–305.

    Article  Google Scholar 

  21. P. D. Wu, D. J. Lloyd, and Y. Huang: Mater. Sci. Eng. A, 2006, vol. 427, pp. 241–45.

    Article  Google Scholar 

  22. M. Y. Huh, J. H. Lee, S. H. Park, O. Engler, and D. Raabe: Steel Res. Int., 2005, vol. 76, pp. 797–806.

    Article  CAS  Google Scholar 

  23. R. D. Knutsen and N. J. Wittridge: Mater. Sci. Technol., 2002, vol. 18, pp. 1279–85.

    Article  CAS  Google Scholar 

  24. O. Engler, M. Y. Huh, and C. N. Tomé: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, vol. 36, pp. 3127–39.

    Article  CAS  Google Scholar 

  25. F. Gao, F. X. Yu, R. D.K. Misra, Xi. J. Zhang, S. M. Zhang, and Z. Y. Liu: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3862–80.

    Article  CAS  Google Scholar 

  26. H.-J. Shin, J.-K. An, and D. N. Lee: 2004, pp. 275–82.

  27. S. Patra, A. Ghosh, J. Sood, L. K. Singhal, A. S. Podder, and D. Chakrabarti: Mater. Des., 2016, vol. 106, pp. 336–48.

    Article  CAS  Google Scholar 

  28. K. Kimura, K. Ushioda, E. Ishimaru, and A. Takahashi: Mater. Sci. Eng. A, 2016, vol. 663, pp. 86–97.

    Article  CAS  Google Scholar 

  29. D. Raabe and K. Lüucke: Mater. Sci. Technol., 1993, vol. 9, pp. 302–12.

    Article  CAS  Google Scholar 

  30. I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Mater. Sci. Eng. A, 1997, vol. 238, pp. 343–50.

    Article  Google Scholar 

  31. A. Martínez-de-Guerenu, F. Arizti, M. Díaz-Fuentes, and I. Gutiérrez: Acta Mater., 2004, vol. 52, pp. 3657–64.

    Article  Google Scholar 

  32. N. J. Wittridge and R. D. Knutsen: Mater. Sci. Eng. A, 1999, vol. 269, pp. 205–16.

    Article  Google Scholar 

  33. X. Ma, J. Zhao, W. Du, X. Zhang, L. Jiang, and Z. Jiang: Mater. Sci. Eng. A, 2017, vol. 685, pp. 358–66.

    Article  CAS  Google Scholar 

  34. I. Samajdar, B. Verlinden, L. Kestens, and P. Van Houtte: Acta Mater, 1999, vol. 47, pp. 55–65.

    Article  CAS  Google Scholar 

  35. J. J. Jonas and L. Kestens: Mater. Sci. Forum, 1996, vol. 204–206, pp. 155–68.

    Article  Google Scholar 

  36. K. Verbeken and L. Kestens: Mater. Sci. Forum, 2002, vol. 408–412, pp. 559–64.

    Article  Google Scholar 

  37. R. Petrov, L. Kestens, K. Verbeken, and Y. Houbaert: Mater. Sci. Forum, 2004, vol. 467–470, pp. 305–10.

    Article  Google Scholar 

  38. K. Verbeken and L. Kestens: Mater. Sci. Forum, 2005, vol. 495–497, pp. 1189–94.

    Article  Google Scholar 

  39. T. Tsuchiyama, R. Hirota, K. Fukunaga, and S. Takaki: ISIJ Int., 2005, vol. 45, pp. 923–29.

    Article  CAS  Google Scholar 

  40. F. Gao, Z. Liu, R. D. K. Misra, H. Liu, and F. Yu: Met. Mater. Int., 2014, vol. 20, pp. 939–51.

    Article  CAS  Google Scholar 

  41. F. V. Braga, D. P. Escobar, T. A. Reis, N. J. L. D. Oliveira, and M. S. Andrade: J. Mater. Res. Technol., 2016, vol. 5, pp. 92–99.

    Article  Google Scholar 

  42. J. H. Lee, S. H. Park, and M. Y. Huh: Mater. Sci. Forum, 2004, vol. 449–452, pp. 113–16.

    Article  Google Scholar 

  43. Md. Zaid and P. P. Bhattacharjee: Mater. Charact., 2014, vol. 96, pp. 263–72.

    Article  CAS  Google Scholar 

  44. M. Y. Huh and O. Engler: Mater. Sci. Eng. A, 2001, vol. 308, pp. 74–87.

    Article  Google Scholar 

  45. J. Mola, I. Jung, J. Park, D. Chae, and B. C D E Cooman: 2011.

  46. H. T. Liu, Z. Y. Liu, Y. Q. Qiu, G. M. Cao, C. G. Li, and G. D. Wang: Mater. Charact., 2009, vol. 60, pp. 79–82.

    Article  CAS  Google Scholar 

  47. V Engler, O; Randle: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. 2 Edn, CRC Press, Baco Raton 2008.

    Google Scholar 

  48. D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    Article  CAS  Google Scholar 

  49. ASTM: E517, 1998, vol. 3, pp. 1–8.

  50. ASTM: E8/E8M—13a, 2009, pp. 1–27.

  51. [51] F. Gao, Z. Y. Liu, H. T. Liu, and G. D. Wang: J. Iron Steel Res. Int., 2013, vol. 20, pp. 31–38.

    Article  CAS  Google Scholar 

  52. H. Yan, H. Bi, X. Li, and Z. Xu: J. Mater. Process. Technol., 2009, vol. 209, pp. 2627–31.

    Article  CAS  Google Scholar 

  53. [53] Y Hayakawa, J A Szpunar, G Palumbo, and P Lin: J. Magn. Magn. Mater., 1996, vol. 160, pp. 143–44.

    Article  CAS  Google Scholar 

  54. Y Hayakawa, M Muraki, and J A Szpunar: Acta Mater., 1998, vol. 46, pp. 1063–73.

    Article  CAS  Google Scholar 

  55. L. Tan, T. R. Allen, and J. T. Busby: J. Nucl. Mater., 2013, vol. 441, pp. 661–66.

    Article  CAS  Google Scholar 

  56. C. M. Sellars and J. A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187–94.

    Article  CAS  Google Scholar 

  57. N. Tsuji, K. Tsuzaki, and T. Maki: ISIJ Int., 1992, vol. 32, pp. 1319–28.

    Article  CAS  Google Scholar 

  58. I. Tikhovskiy, D. Raabe, and F. Roters: Scr. Mater., 2006, vol. 54, pp. 1537–42.

    Article  CAS  Google Scholar 

  59. R. K. Ray and J. J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36.

    Article  Google Scholar 

  60. S. H. Park, K. Y. Kim, Y. D. Lee, and C. G. Park: ISIJ Int., 2002, vol. 42, pp. 100–105.

    Article  CAS  Google Scholar 

  61. G. E. Dieter: Mech. Metall. SI Metr. Ed. McGraw-Hill B. Co, 1962, vol. 273, p. 338.

  62. R. W. Hertzberg: Deform. Fract. Mech. Eng. Mater. 2nd Ed. J. Wiley Sons, 1996, p. 810.

  63. J. C. Kim, J. J. Kim, J. Y. Choi, J. H. Choi, and S. K. Kim: Metall. Ital., 2009, vol. 101, pp. 43–48.

    Google Scholar 

  64. Hashimoto S, Takahashi A, Hamada J, Kimura K, Morohoshi T, Yamada Y, Kakihara T (2008) Pat Appl Publ 1:455

    Google Scholar 

  65. K. Kimura, S. Fukumoto, G. Shigesato, and A. Takahashi: Tetsu-to-Hagane, 2012, vol. 98, pp. 601–9.

    Article  Google Scholar 

  66. C. Wang, H. Gao, Y. Dai, X. Ruan, J. Wang, and B. Sun: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1616–20.

    Article  CAS  Google Scholar 

  67. H. Takeuchi, H. Mori, Y. Ikehara, T. Komano, and T. Yanai: Trans. Iron Steel Inst. Japan, 1981, vol. 21, pp. 109–16.

    Article  Google Scholar 

  68. V. Villaret, F. Deschaux-Beaume, and C. Bordreuil: J. Mater. Process. Technol., 2016, vol. 233, pp. 115–24.

    Article  CAS  Google Scholar 

  69. J. Han, H. Li, F. Barbaro, Z. Zhu, L. Jiang, H. Xu, and L. Ma: Mater. Sci. Eng. A, 2014, vol. 616, pp. 20–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Research Infrastructure Development grant (SGDRI-2015) received from SRIC, IIT, Kharagpur. The authors acknowledge the experimental support received from the Department of Metallurgical and Materials Engineering and Central Research Facility,the IIT, Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranabananda Modak.

Additional information

Manuscript submitted November 21, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modak, P., Patra, S., Mitra, R. et al. Effect of Starting As-cast Structure on the Microstructure–Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel. Metall Mater Trans A 49, 2219–2234 (2018). https://doi.org/10.1007/s11661-018-4566-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4566-7

Navigation