Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

Article
  • 48 Downloads

Abstract

The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro–macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

Notes

Acknowledgments

One of the authors (HZ) gratefully acknowledges the support provided by the National Science Foundation’s CMMI Program under Grant No. 1434879. TB wishes to acknowledge the assistance and support of the Libyan Ministry of Higher Education and Scientific Research and Mrs. Cassandra Radigan, Educational Program Manager, MSC Software Company. TB also thanks Mr. Pierre-Yves Lavertu, Application Engineer, e-Xstream Engineering, MSC Software Company, for his technical assistance.

References

  1. 1.
    R. Alturk, S. Mates, Z. Xu, and F. Abu-farha: TMS 2017 146th Annu. Meet. Exhib. Suppl. Proc., 2017, pp. 243–54.Google Scholar
  2. 2.
    V.H. Baltazar Hernandez, S.S. Nayak, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3115–29.CrossRefGoogle Scholar
  3. 3.
    N.H. Abid, R.K. Abu Al-Rub, and A.N. Palazotto: Comput. Mater. Sci., 2015, vol. 103, pp. 20–37.CrossRefGoogle Scholar
  4. 4.
    J. Qin, R. Chen, X. Wen, Y. Lin, M. Liang, and F. Lu: Mater. Sci. Eng. A, 2013, vol. 586, pp. 62–70.CrossRefGoogle Scholar
  5. 5.
    S. Kumar, M. Singhai, R. Desai, S. Sam, and P.K. Patra: J. Inst. Eng. Ser. D, 2016, vol. 97, pp. 153–58.CrossRefGoogle Scholar
  6. 6.
    C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Ann. Rev. Mater. Res., 2014, vol. 45, pp. 391–431.CrossRefGoogle Scholar
  7. 7.
    H. Yu, Y. Guo, K. Zhang, and X. Lai: Comput. Mater. Sci., 2009, vol. 46, pp. 36–41.CrossRefGoogle Scholar
  8. 8.
    N.K. Singh, E. Cadoni, M.K. Singha, and N.K. Gupta: Mater. Des., 2011, vol. 32, pp. 5091–98.CrossRefGoogle Scholar
  9. 9.
    J.-H. Kim, D. Kim, H.N. Han, F. Barlat, and M.-G. Lee: Mater. Sci. Eng. A, 2013, vol. 559, pp. 222–31.CrossRefGoogle Scholar
  10. 10.
    S. Kim and S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1753–60.CrossRefGoogle Scholar
  11. 11.
    Y. Cao, B. Karlsson, and J. Ahlström: Mater. Sci. Eng. A, 2015, vol. 636, pp. 124–32.CrossRefGoogle Scholar
  12. 12.
    B. Hwang, T.Y. Cao, S.Y. Shin, S.H. Kim, S.H. Lee, and S.J. Kim: Mater. Sci. Technol., 2005, vol. 21, pp. 967–75.CrossRefGoogle Scholar
  13. 13.
    W. Wang, M. Li, C. He, X. Wei, D. Wang, and H. Du: Mater. Des., 2013, vol. 47, pp. 510–21.CrossRefGoogle Scholar
  14. 14.
    A. Zare and A. Ekrami: J. Mater. Eng. Perform., 2013, vol. 22, pp. 823–29.CrossRefGoogle Scholar
  15. 15.
    P. Oscar and R.L. Eduardo: Engineering, 2008, vol. II, pp. 2–7.Google Scholar
  16. 16.
    E. Cadoni, N.K. Singh, D. Forni, M.K. Singha, and N.K. Gupta: Eur. Phys. J. Spec. Top., 2016, vol. 225, pp. 409–21.CrossRefGoogle Scholar
  17. 17.
    T. Rahmaan, C. Butcher, A. Abedini, and M. Worswick: 11th Int. DYMAT Conf.  https://doi.org/10.1051/epjconf/20159401033.
  18. 18.
    Z.H. Jiang, Z.Z. Guan, and J.S. Lian: Mater. Sci. Eng., 1995, vol. 190, pp. 55–64.CrossRefGoogle Scholar
  19. 19.
    M. Delincé, Y. Bréchet, J.D. Embury, M.G.D. Geers, P.J. Jacques, and T. Pardoen: Acta Mater., 2007, vol. 55, pp. 2337–50.CrossRefGoogle Scholar
  20. 20.
    M. Amirmaleki, J. Samei, D.E. Green, I. van Riemsdijk, and L. Stewart: Mech. Mater., 2016, vol. 101, pp. 27–39.CrossRefGoogle Scholar
  21. 21.
    A.S. Khan, M. Baig, S.-H. Choi, H.-S. Yang, and X. Sun: Int. J. Plast., 2012, vols. 30–31, pp. 1–17.Google Scholar
  22. 22.
    S.K. Paul: Mater. Des., 2013, vol. 44, pp. 397–406.CrossRefGoogle Scholar
  23. 23.
    S. Sodjit and V. Uthaisangsuk: Mater. Des., 2012, vol. 41, pp. 370–79.CrossRefGoogle Scholar
  24. 24.
    A. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, and L. Brassart: ACTA Mater., 2014, vol. 73, pp. 298–311.CrossRefGoogle Scholar
  25. 25.
    T.M. Belgasam and H.M. Zbib: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 6153–77.CrossRefGoogle Scholar
  26. 26.
    T. Belgasam and H. Zbib: J. Eng. Mater. Technol., 2018,  https://doi.org/10.1115/1.4039292.Google Scholar
  27. 27.
    S. Sodjit and V. Uthaisangsuk: J. Met. Mater. Miner., 2012, vol. 22, pp. 87–97.Google Scholar
  28. 28.
    A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, and W. Bleck: Mater. Sci. Eng. A, 2014, vol. 589, pp. 1–14.CrossRefGoogle Scholar
  29. 29.
    S.K. Paul and A. Kumar: Comput. Mater. Sci., 2012, vol. 63, pp. 66–74.CrossRefGoogle Scholar
  30. 30.
    A. Ramazani, P.T. Pinard, S. Richter, A. Schwedt, and U. Prahl: Comput. Mater. Sci., 2013, vol. 80, pp. 134–41.CrossRefGoogle Scholar
  31. 31.
    C. Thomser, V. Uthaisangsuk, and W. Bleck: Steel Res., 2009, vol. 80, pp. 582–87.Google Scholar
  32. 32.
    S.K. Paul: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 1–26.CrossRefGoogle Scholar
  33. 33.
    A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck: Mater. Sci. Eng. A, 2013, vol. 560, pp. 129–39.CrossRefGoogle Scholar
  34. 34.
    V. Uthaisangsuk, U. Prahl, and W. Bleck: Eng. Fract. Mech., 2011, vol. 78, pp. 469–86.CrossRefGoogle Scholar
  35. 35.
    A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck: Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.CrossRefGoogle Scholar
  36. 36.
    Y. Bergström, Y. Granbom, and D. Sterkenburg: J. Metall., 2010, pp. 1–16.CrossRefGoogle Scholar
  37. 37.
    G. Krauss: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 205–21.CrossRefGoogle Scholar
  38. 38.
    T.S. Byun and I.S. Kim: J. Mater. Sci., 1993, vol. 28, pp. 2923–32.CrossRefGoogle Scholar
  39. 39.
    P.D. Sudersanan, N. Kori, S. Aprameyan, and U.N. Kempaiah: 2012, vol. 2, pp. 1–4.Google Scholar
  40. 40.
    P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRefGoogle Scholar
  41. 41.
    M. Bechtold, M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe:  https://doi.org/10.1016/j.actamat.2010.10.002.
  42. 42.
    R.-M. Rodriguez and I. Gutiérrez: Mater. Sci. Forum, 2003, vols. 426–432, pp. 4525–30.CrossRefGoogle Scholar
  43. 43.
    N.H. Abid, R.K. Abu Al-Rub, and A.N. Palazotto: Int. J. Solids Struct., 2017, vols. 104–105, pp. 8–24.CrossRefGoogle Scholar
  44. 44.
    V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, and F. Hild: Int. J. Solids Struct., 2008, vol. 45, pp. 601–19.CrossRefGoogle Scholar
  45. 45.
    E.S. Perdahcıoğlu and H.J.M. Geijselaers: Int. J. Mater. Forming, 2011, vol. 4, pp. 93–102.CrossRefGoogle Scholar
  46. 46.
    T. Mori and K. Tanaka: Acta Metall., 1973, vol. 21, pp. 571–74.CrossRefGoogle Scholar
  47. 47.
    L. Adam, A. Depouhon, and R. Assaker: 7th Eur. LS-DYNA Conf., 2009, pp. 1–9.Google Scholar
  48. 48.
    B. Klusemann and B. Svendsen: Tech. Mech., 2010, vol. 30, pp. 374–86.Google Scholar
  49. 49.
    A.J. Makadia and J.I. Nanavati: Meas. J. Int. Meas. Confed., 2013, vol. 46, pp. 1521–29.CrossRefGoogle Scholar
  50. 50.
    H. Öktem, T. Erzurumlu, and H. Kurtaran: J. Mater. Process. Technol., 2005, vol. 170, pp. 11–16.CrossRefGoogle Scholar
  51. 51.
    M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–40.CrossRefGoogle Scholar
  52. 52.
    X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel: Int. J. Plast., 2009, vol. 25, pp. 1888–1909.CrossRefGoogle Scholar
  53. 53.
    H. Sharifi, M. Salehi, and M.R. Saeri: 2014, vol. 11, pp. 11–16.Google Scholar
  54. 54.
    A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193–1202.CrossRefGoogle Scholar
  55. 55.
    S.K. Paul: Mater. Des., 2013, vol. 50, pp. 782–89.CrossRefGoogle Scholar
  56. 56.
    S. Krajewski and J. Nowacki: Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 278–86.CrossRefGoogle Scholar
  57. 57.
    G.I.: Metalurgija, 2012, vol. 11, pp. 201–14.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Mechanical Engineering Department, Faculty of EngineeringUniversity of BenghaziBenghaziLibya

Personalised recommendations