Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2441–2454 | Cite as

Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

  • A. Chakkedath
  • T. Maiti
  • J. Bohlen
  • S. Yi
  • D. Letzig
  • P. Eisenlohr
  • C. J. Boehlert
Article
  • 222 Downloads

Abstract

Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure (\({\varepsilon} _{\text {f}}\)), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their \(\langle {c}\rangle \)-axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal \(\langle {c+a}\rangle \) slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10\({\bar{1}}\)1}–{10\({\bar{1}}\)2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin–matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the \({\varepsilon} _{\text {f}}\) value. A combination of basal, prismatic, and pyramidal \(\langle {c+a}\rangle \) slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal \(\langle {c+a}\rangle \) slip, and the improved \({\varepsilon} _{\text {f}}\) values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

Notes

Acknowledgments

This work was supported by the National Science Foundation through grants DMR-1107117 and CMMI-1463006. The authors also acknowledge Drs. María Teresa Pérez Prado and Javier Llorca of IMDEA Materials Institute (Madrid, Spain), and Thomas R. Bieler of Michigan State University for useful discussions.

References

  1. 1.
    M. M. Avedesian and H. Baker (eds.): ASM specialty handbook: Magnesium and magnesium alloys. ASM International, Materials Park, Ohio, 1999.Google Scholar
  2. 2.
    B. Mordike and T. Ebert: Materials Science and Engineering A, 2001. vol. 302(1), pp. 37–45.  https://doi.org/10.1016/S0921-5093(00)01351-4.CrossRefGoogle Scholar
  3. 3.
    M. H. Yoo: Metallurgical Transactions A, 1981. vol. 12A, pp. 409–418.  https://doi.org/10.1007/BF02648537.CrossRefGoogle Scholar
  4. 4.
    W. H. Hartt and R. E. Reed-Hill: Transactions of the Metallurgical Society of AIME, 1967. vol. 239, pp. 1511–1517.Google Scholar
  5. 5.
    R. E. Reed-Hill and W. D. Robertson: Acta Metallurgica, 1957a. vol. 5(12), pp. 728–737.  https://doi.org/10.1016/0001-6160(57)90075-5.CrossRefGoogle Scholar
  6. 6.
    R. E. Reed-Hill and W. D. Robertson: Acta Metallurgica, 1957b. vol. 5(12), pp. 717–727.  https://doi.org/10.1016/0001-6160(57)90074-3.CrossRefGoogle Scholar
  7. 7.
    H. Yoshinaga and R. Horiuchi: Transactions of the Japan Institute of Metals, 1963. vol. 4(1), pp. 1–8.  https://doi.org/10.2320/matertrans1960.4.1.CrossRefGoogle Scholar
  8. 8.
    H. Yoshinaga, T. Obara, and S. Morozumi: Materials Science and Engineering, 1973. vol. 12(5), pp. 255–264.CrossRefGoogle Scholar
  9. 9.
    E. W. Kelley and W. F. Hosford: Transactions of the Metallurgical Society of AIME, 1968. vol. 242(1), pp. 5–13.Google Scholar
  10. 10.
    B. C. Wonsiewicz and W. A. Backofen: Transactions of the Metallurgical Society of AIME, 1967. vol. 239, pp. 1422–1431.Google Scholar
  11. 11.
    W. H. Hartt and R. E. Reed-Hill: Transactions of the Metallurgical Society of AIME, 1968. vol. 242, pp. 1127–1133.Google Scholar
  12. 12.
    S. L. Couling, J. F. Pashak, and L. Sturkey: American Society for Metals Transactions, 1959. vol. 51, pp. 94–107.Google Scholar
  13. 13.
    J. Bohlen, S. Yi, D. Letzig, and K. U. Kainer: Materials Science and Engineering: A, 2010. vol. 527(26), pp. 7092–7098.  https://doi.org/10.1016/j.msea.2010.07.081.CrossRefGoogle Scholar
  14. 14.
    W. B. Hutchinson and M. R. Barnett: Scripta Materialia, 2010. vol. 63(7), pp. 737–740.  https://doi.org/10.1016/j.scriptamat.2010.05.047.CrossRefGoogle Scholar
  15. 15.
    A. Chapuis and J. H. Driver: Acta Materialia, 2011. vol. 59(5), pp. 1986–1994.  https://doi.org/10.1016/j.actamat.2010.11.064.CrossRefGoogle Scholar
  16. 16.
    K. Yoshida: International Journal of Plasticity, 2016. vol. 84, pp. 102–137.  https://doi.org/10.1016/j.ijplas.2016.05.004.CrossRefGoogle Scholar
  17. 17.
    M. R. Barnett, M. D. Nave, and C. J. Bettles: Materials Science and Engineering: A, 2004. vol. 386(1-2), pp. 205–211.  https://doi.org/10.1016/j.msea.2004.07.030.CrossRefGoogle Scholar
  18. 18.
    M. D. Nave and M. R. Barnett: Scripta Materialia, 2004. vol. 51(9), pp. 881–885.  https://doi.org/10.1016/j.scriptamat.2004.07.002.CrossRefGoogle Scholar
  19. 19.
    G. Martin, C. W. Sinclair, W. J. Poole, and H. Azizi-Alizamini: JOM, 2015. vol. 67(8), pp. 1761–1773.  https://doi.org/10.1007/s11837-015-1449-x.CrossRefGoogle Scholar
  20. 20.
    M. R. Barnett: Materials Science and Engineering: A, 2007. vol. 464(1-2), pp. 8–16.  https://doi.org/10.1016/j.msea.2007.02.109.CrossRefGoogle Scholar
  21. 21.
    M. R. Barnett, Z. Keshavarz, A. G. Beer, and X. Ma: Acta Materialia, 2008. vol. 56(1), pp. 5–15.  https://doi.org/10.1016/j.actamat.2007.08.034.CrossRefGoogle Scholar
  22. 22.
    D. Ando and Y. Sutou: Acta Materialia, 2010. vol. 58(13), pp. 4316–4324.  https://doi.org/10.1016/j.actamat.2010.03.044.CrossRefGoogle Scholar
  23. 23.
    D. Ando, J. Koike, and Y. Sutou: Materials Science and Engineering: A, 2014. vol. 600, pp. 145–152.  https://doi.org/10.1016/j.msea.2014.02.010.CrossRefGoogle Scholar
  24. 24.
    S. Niknejad, S. Esmaeili, and N. Y. Zhou: Acta Materialia, 2016. vol. 102, pp. 1–16.  https://doi.org/10.1016/j.actamat.2015.09.026.CrossRefGoogle Scholar
  25. 25.
    L. Jiang, J. J. Jonas, A. A. Luo, A. K. Sachdev, and S. Godet: Scripta Materialia, 2006. vol. 54(5), pp. 771–775.  https://doi.org/10.1016/j.scriptamat.2005.11.029.CrossRefGoogle Scholar
  26. 26.
    Q. Ma, H. El Kadiri, A. L. Oppedal, J. C. Baird, M. F. Horstemeyer, and M. Cherkaoui: Scripta Materialia, 2011. vol. 64(9), pp. 813–816.  https://doi.org/10.1016/j.scriptamat.2011.01.003.CrossRefGoogle Scholar
  27. 27.
    Q. Ma, H. El Kadiri, A. L. Oppedal, J. C. Baird, B. Li, M. F. Horstemeyer, and S. C. Vogel: International Journal of Plasticity, 2012. vol. 29, pp. 60–76.  https://doi.org/10.1016/j.ijplas.2011.08.001.CrossRefGoogle Scholar
  28. 28.
    D. Ando and J. Koike: Journal of the Japan Institute of Metals, 2007. vol. 71(9), pp. 684–687.CrossRefGoogle Scholar
  29. 29.
    J. Koike: Metallurgical and Materials Transactions A, 2005. vol. 36(7), pp. 1689–1696.  https://doi.org/10.1007/s11661-005-0032-4.CrossRefGoogle Scholar
  30. 30.
    T. Obara, H. Yoshinga, and S. Morozumi: Acta Metallurgica, 1973. vol. 21(7), pp. 845–853.  https://doi.org/10.1016/0001-6160(73)90141-7.CrossRefGoogle Scholar
  31. 31.
    A. Chakkedath and C. J. Boehlert: JOM, 2015. vol. 67(8), pp. 1748–1760.CrossRefGoogle Scholar
  32. 32.
    C. J. Boehlert, Z. Chen, A. Chakkedath, I. Gutiérrez-Urrutia, J. Llorca, J. Bohlen, S. Yi, D. Letzig, and M. T. Pérez-Prado: Philosophical Magazine, 2013. vol. 93(6), pp. 598–617.  https://doi.org/10.1080/14786435.2012.725954.CrossRefGoogle Scholar
  33. 33.
    A. Chakkedath, J. Bohlen, S. Yi, D. Letzig, Z. Chen, and C. J. Boehlert: Metallurgical and Materials Transactions A, 2014. vol. 45(8), pp. 3254–3274.  https://doi.org/10.1007/s11661-013-2143-7.CrossRefGoogle Scholar
  34. 34.
    A. Chakkedath, S. Yi, D. Letzig, Z. Chen, and C. J. Boehlert: in Magnesium Technology, 2015, pp. 109–114.Google Scholar
  35. 35.
    C. J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, and M. T. Pérez-Prado: Acta Materialia, 2012. vol. 60(4), pp. 1889–1904.  https://doi.org/10.1016/j.actamat.2011.10.025.CrossRefGoogle Scholar
  36. 36.
    Z. Chen and C. J. Boehlert: JOM, 2013. vol. 65(9), pp. 1237–1244.  https://doi.org/10.1007/s11837-013-0672-6.CrossRefGoogle Scholar
  37. 37.
    C. J. Boehlert, H. Li, L. Wang, and B. Bartha: Advanced Materials & Processes, 2010. vol. 168(11), pp. 41–45.Google Scholar
  38. 38.
    H. Li, C. J. Boehlert, T. R. Bieler, and M. A. Crimp: Philosophical Magazine, 2015. vol. 95(7), pp. 691–729.  https://doi.org/10.1080/14786435.2014.1001459.CrossRefGoogle Scholar
  39. 39.
    I. Dastidar, A. Pilchak, T. R. Bieler, V. Khademi, M. A. Crimp, and C. J. Boehlert: Materials Science and Engineering A, 2015. vol. 636, pp. 289–300.CrossRefGoogle Scholar
  40. 40.
    H. Li, D. E. Mason, T. R. Bieler, C. J. Boehlert, and M. A. Crimp: Acta Materialia, 2013. vol. 61(20), pp. 7555–7567.  https://doi.org/10.1016/j.actamat.2013.08.042.CrossRefGoogle Scholar
  41. 41.
    F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe: Acta Materialia, 2010. vol. 58, pp. 1152–1211.  https://doi.org/10.1016/j.actamat.2009.10.058.CrossRefGoogle Scholar
  42. 42.
    F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe: in Procedia IUTAM: IUTAM Symposium on Linking Scales in Computation: From Microstructure to Macroscale Properties, vol. 3, O. Cazacu, ed., Elsevier, Amsterdam, pp. 3–10.  https://doi.org/10.1016/j.piutam.2012.03.001.
  43. 43.
    D. Peirce, R. J. Asaro, and A. Needleman: Acta Metallurgica, 1982. vol. 30(6), pp. 1087–1119.  https://doi.org/10.1016/0001-6160(82)90005-0.CrossRefGoogle Scholar
  44. 44.
    J. W. Hutchinson: Proceedings of the Royal Society A, 1976. vol. 348, pp. 101–127.  https://doi.org/10.1098/rspa.1976.0027.CrossRefGoogle Scholar
  45. 45.
    S. R. Agnew, D. Brown, and C. N. Tomé: Acta Materialia, 2006. vol. 54(18), pp. 4841–4852.  https://doi.org/10.1016/j.actamat.2006.06.020.CrossRefGoogle Scholar
  46. 46.
    A. Pandey, F. Kabirian, J-H Hwang, S-H Choi, and A. S. Khan: International Journal of Plasticity, 2015. vol. 68, pp. 111–131.  https://doi.org/10.1016/j.ijplas.2014.12.001.CrossRefGoogle Scholar
  47. 47.
    A. S. Khan, A. Pandey, T. Gnäupel-Herold, and R. K. Mishra: International Journal of Plasticity, 2011. vol. 27(5), pp. 688–706.  https://doi.org/10.1016/j.ijplas.2010.08.009.CrossRefGoogle Scholar
  48. 48.
    ASTM International: ASTM E112-13 Standard Test Methods for Determining Average Grain Size, 2013.  https://doi.org/10.1520/E0112.
  49. 49.
    J. Koike, Y. Sato, and D. Ando: Materials Transactions, 2008. vol. 49(12), pp. 2792–2800.  https://doi.org/10.2320/matertrans.MRA2008283.CrossRefGoogle Scholar
  50. 50.
    H. Yoshinaga and R. Horiuchi: Transactions of the Japan Institute of Metals, 1964. vol. 5(1), pp. 14–21.CrossRefGoogle Scholar
  51. 51.
    A. Chakkedath: A study of the effects of rare-earth elements on the microstructural evolution and deformation behavior of magnesium alloys at temperatures up to 523K. Ph.D. thesis, Michigan State University, 2016. https://search.proquest.com/docview/1776157968?accountid=12598.
  52. 52.
    P. Cizek and M. R. Barnett: Scripta Materialia, 2008. vol. 59(9), pp. 959–962.  https://doi.org/10.1016/j.scriptamat.2008.06.041.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • A. Chakkedath
    • 1
  • T. Maiti
    • 1
  • J. Bohlen
    • 2
  • S. Yi
    • 2
  • D. Letzig
    • 2
  • P. Eisenlohr
    • 1
  • C. J. Boehlert
    • 1
  1. 1.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Magnesium Innovation Centre MagIC Helmholtz-Zentrum Geesthacht – Zentrum für Material- und Küstenforschung GmbHGeesthachtGermany

Personalised recommendations