Skip to main content
Log in

Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. INCONEL is a trademark of International Nickel Co., INC., USA.

  2. Fortran is a trademark of Compaq Information Technologies Group, L.P., USA.

  3. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. C. Jang, J. Lee, J.S. Kim, and T.E. Jin: Int. J. Press. Vess. Piping, 2008, vol. 85, pp. 635–46.

    Article  CAS  Google Scholar 

  2. R. Chhibber, N. Arora, S.R. Gupta, and B.K. Dutta: J. Mech. Eng. Sci., 2006, vol. 220, pp. 1121–33.

    Article  CAS  Google Scholar 

  3. R. Miteva and N.G. Taylor: NESC Report, Institute for Energy, Netherlands, 2006.

    Google Scholar 

  4. J.N. DuPont, J.N. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Ni-Base Alloys, Wiley, Hoboken, NJ, 2009, pp. 327–76.

    Google Scholar 

  5. A. Celik and A. Alsaran: Mater. Charact., 1999, vol. 43, pp. 311–18.

    Article  CAS  Google Scholar 

  6. H. Naffakh, M. Shamanian, and F. Ashrafizadeh: J. Mater. Processing Technol., 2009, vol. 209, pp. 3628–39.

    Article  CAS  Google Scholar 

  7. M. Sireesha, S.K. Albert, V. Shankar, and S. Sundaresan: J. Nucl. Mater., 2000, vol. 279, pp. 65–76.

    Article  CAS  Google Scholar 

  8. J.W. Kim, K. Lee, J.S. Kim, and T.S. Byun: J. Nucl. Mater., 2009, vol. 384, pp. 212–21.

    Article  CAS  Google Scholar 

  9. H.T. Wang, G.Z. Wang, F.Z. Xuan, C.J. Liu, and S.T. Tu: Mater. Sci. Eng. A, 2013, vol. 568, pp. 108–17.

    Article  CAS  Google Scholar 

  10. D.N. French: Weld Des. Fab., 1981, vol. 54, pp. 92–93.

    Google Scholar 

  11. C.D. Lundin: Weld. J., 1982, vol. 61, pp. 58–63.

    Google Scholar 

  12. D.W. Wilson: Weld. J., 1990, vol. 69, pp. 71–72.

    Google Scholar 

  13. A. K. Bhaduri, S. Venkadesan, P. Rodriguez, and P.G. Mukunda: Int. J. Press. Vess. Piping, 1994, vol. 58, pp. 251–65.

    Article  CAS  Google Scholar 

  14. N. Taylor, C. Faidy, and P. Gilles: Assessment of Dissimilar Weld Integrity: Final Report of the NESC-III Project, Institute for Energy, European Commission, DG-Joint Research Centre, 2006

  15. A. Wiltner, C. Linsmeier, and T. Jacob: J. Chem. Phys., 2008, vol. 129, pp. 084704-1–084704-10.

    Article  Google Scholar 

  16. G. Ramamurthy: Applied Finite Element Analysis, IK International Publishing House, New Delhi, 2012.

    Google Scholar 

  17. T.R. Chandrupatla and A.D. Belegundu: Introduction to Finite Elements in Engineering, PHI Learning Pvt. Limited, New Delhi, 2011.

    Google Scholar 

  18. J. Goldak, A. Chakravarti, and M. Bibby: Metall. Trans. B, 1984, vol. 15B, pp. 299–305.

    Article  Google Scholar 

  19. S. Akella, B.R. Kumar, and V. Harinadh: in 1st Int. Conf. on Structural Integrity (ICONS 2014), Kalpakkam, India, 2014, p. 141.

  20. S. Sahin, M. Toparli, I. Ozdemir, and S. Sasaki: J. Mater. Proc. Technol., 2003, vol. 132, pp. 235–41.

    Article  CAS  Google Scholar 

  21. S. Xu: Proc. Eng., 2011, vol. 15, pp. 3860–64.

    Article  CAS  Google Scholar 

  22. M. Ghosh, R. Santosh, S.K. Das, G. Das, B. Mahato, J. Korody, S. Kumar, and P.K. Singh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3555–68.

    Article  Google Scholar 

  23. R. Nivas, G. Das, S.K. Das, B. Mahato, S. Kumar, K. Shivaprasad, P.K. Singh, and M. Ghosh: Metall. Mater. Trans. A, 2017, vol. 48, pp. 230–45.

    Article  Google Scholar 

  24. A. Joseph, S.K. Rai, T. Jayakumar, and N. Murugan: Int. J. Press. Vess. Piping, 2005, vol. 82, pp. 700–05.

    Article  CAS  Google Scholar 

  25. H.P. Seifert and S. Ritter: J. Nucl. Mater., 2008, vol. 378, pp. 197–210.

    Article  CAS  Google Scholar 

  26. T.K. Yeh, G.R. Huang, M.Y. Wang, and C.H. Tsai: Progr. Nucl. Energy, 2013, vol. 63, pp. 7–11.

    Article  CAS  Google Scholar 

  27. T. Sarikka, M. Ahonen, R. Mouginot, P. Nevasmaa, P. Karjalainen-Roikonen, U. Ehrnstén, and H. Hänninen: Int. J. Press. Vess. Piping, 2016, vol. 145, pp. 13–22.

    Article  CAS  Google Scholar 

  28. K. Sharma, H.K. Khandelwal, V. Bhasin, and R. Chhibber: Adv. Mater. Res., 2012, vol. 585, pp. 342–46.

    Article  CAS  Google Scholar 

  29. https://inis.iaea.org/search/search.aspx?orig_q=RN:43001715.

  30. D.W. Rathod, S. Pandey, P.K. Singh, and R. Prasad: Mater. Sci. Eng. A, 2015, vol. 639, pp. 259–68.

    Article  CAS  Google Scholar 

  31. R. Santosh, S.K. Das, G. Das, J. Korody, S. Kumar, P.K. Singh, and M. Ghosh: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3511–21.

    Article  Google Scholar 

  32. K. Ikushima, A. Takeuchi, T. Okada, S. Itoh, S. Nishikawa, and M. Shibahara: Proc. 1st Int. Joint Symp. on Joining and Welding, 1st ed., Hidetoshi Woodhead Publishing, Cambridge, U.K., 2013, pp. 537–45.

  33. A. Maekawa, A. Kawahara, H. Serizawa, and H. Murakawa: J. Press. Vess. Technol., 2016, vol. 138, pp. 021401-1–021401-11.

    Article  Google Scholar 

  34. F.W. Brust, Y.P. Yang, and P.M. Scott: Evaluation of Reactor Pressure Vessel (RPV) Nozzle to Hot-Leg Piping Bimetallic Weld Joint Integrity for the VC Summer Nuclear Power Plant, Contract Number–NRC-04-97-052, Job Code W 6775.

  35. S. Nadimi, R.J. Khoushehmehr, B. Rohani, and A. Mostafapour: J. Appl. Sci., 2008, vol. 8, pp. 1014–20.

    Article  Google Scholar 

  36. H.S. Hosseini, M. Shamanian, and A. Kermanpur: Mater. Charact., 2011, vol. 62, pp. 425–31.

    Article  Google Scholar 

  37. F. Matsuda and H. Nakagawa: Trans. JWRI, 1984, vol. 13, pp. 159–61.

    CAS  Google Scholar 

  38. A. Vasilyev: Materials Science & Technology 2007, Detroit, MI, Sept. 16–20, 2007; Fundamentals & Characterization: Phase Stability, Diffusion and Their Application, organized by J. Morral, Z.K. Liu, R. Arroyave, S.A. Attanasio, N. Sandberg, and Y. Sohn, https://www.academia.edu/6752185/Carbon_Diffusion_Coefficient_in_Complexly_Alloyed_Austenite.

  39. M. Pett: Mater. Sci. Technol., 2014, vol. 31, pp. 1370–75.

  40. M.D. Rowe, T.W. Nelson, and J.C. Lippold: Weld. J., 1999, vol. 78, pp. 31s–37s.

    Google Scholar 

  41. J.N. DuPont and C.S. Kusko: Weld. J., 2007, vol. 86, pp. 51s–54s.

    Google Scholar 

  42. M.W.A. Rashid, M. Gakim, Z.M. Rosli, and M.A. Azam: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 9465–77.

    Google Scholar 

  43. G.D. Huang, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 1239–46.

    Article  CAS  Google Scholar 

  44. www.aircraftmaterials.com/data/weld/.

  45. L. Yang, X. Dang, M. Li, and N. Ji: 2nd Int. Conf. on Electronic & Mechanical Engineering and Information Technology (EMEIT-2012), Shenyang, China, Sept. 7–9, 2012.

  46. J.A. Lichtenfeld, C.J. Tyne, and M.C. Mataya: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 147–61.

    Article  CAS  Google Scholar 

  47. V. Deaconu: 5th Int. Conf. Structural Integrity of Weld Structures (ISCS2007), 2007, pp. 20–21.

  48. R.L. Klueh and J.F. King: Weld. J., 1982, vol. 61, pp. 302–11.

    Google Scholar 

  49. K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 115–24.

    Article  CAS  Google Scholar 

  50. D.J. Kotecki and V.B. Rajan: Weld. J.–Inc. Weld. Res. Suppl., 1997, vol. 76, pp. 57s–66s.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghosh.

Additional information

Manuscript submitted July 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, R., Das, G., Kumar, S. et al. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel. Metall Mater Trans A 49, 2099–2112 (2018). https://doi.org/10.1007/s11661-018-4554-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4554-y

Navigation