Metallurgical and Materials Transactions A

, Volume 49, Issue 5, pp 1571–1578 | Cite as

Tensile Properties and Deformation Mechanisms of Haynes 282 at Various Temperatures

  • P. Zhang
  • Y. Yuan
  • H. Yin
  • Y. Gu
  • J. Wang
  • M. Yang
  • G. Yang
  • X. Song


The effect of temperature on the deformation mechanism and corresponding tensile properties of Haynes 282 is investigated in the temperature range from room temperature to 800 °C. It is found that below 600 °C, the yield strength remains basically unchanged with increasing temperature, while, above the temperature, a dramatic decrease in the yield strength is observed. Transmission electron microscopy observations on the slightly deformed specimens reveal that, for the experimental alloy, the plastic deformation is accomplished predominantly by pairs of a/2〈101〉 dislocation shearing through γ′ precipitates at temperatures between room temperature and 600 °C and by individual matrix dislocation bypassing γ′ precipitates above 760 °C, whereas at temperatures between the two temperatures, anti-phase boundary shearing and stacking fault shearing as well as Orowan looping operate simultaneously during the initial plastic deformation. Based on the experimental observations, it is deemed that the transitions in the deformation mechanisms account for the variation of the yield strength of the experimental alloy with temperature.



The authors gratefully thank Jiao Li (Instrumental analysis center of Xi’an Jiaotong University) for her assistance in conducting the SEM and TEM experiments. This work was also financially supported by the Strategic Emerging Industry Project of Sichuan Province (Grant Number SC201351010620), China Huaneng Power International Inc (Grant Number HNKJ17-H10), and China Postdoctoral Science Foundation (Grant Number 2017M623213) as well as Shaanxi Provincial People’s and Social Welfare Department (Grant Number 2017031).


  1. 1.
    A.D. Gianfrancesco, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead, Kidlington, 2016.Google Scholar
  2. 2.
    L.M. Pike: Proceedings of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, 2006, pp. 1–9.Google Scholar
  3. 3.
    L.M. Pike: Proceedings of the Eleventh International Symposium on Superalloys, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.A. Woodard, eds., TMS, 2008, pp. 191–200.Google Scholar
  4. 4.
    C.J. Boehlert, S.C. Longanbach: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4888-4898.CrossRefGoogle Scholar
  5. 5.
    X. Song, L. Tang, Z. Chen, R. Zhou: J. Mater. Sci., 2016, pp. 1–12.Google Scholar
  6. 6.
    C. Joseph, C. Persson, M.H. Colliander: Mater. Sci. Eng., A, 2017, vol. 679, pp. 520-530.CrossRefGoogle Scholar
  7. 7.
    A.J. Ardell: Metall. Mater. Trans. A, 1985, vol. 16, pp. 2131-2165.CrossRefGoogle Scholar
  8. 8.
    R.C. Reed and C.M.F. Rae: Physical Metallurgy, D.E. Laughlin, K. Hono, eds., Elsevier, Amsterdam, 2014, pp. 2215–90.Google Scholar
  9. 9.
    D. Raynor, J.M. Silcock: Metal. Sci., 1970, vol. 4, pp. 121-130.CrossRefGoogle Scholar
  10. 10.
    D.A. Grose, G.S. Ansell: Metall. Mater. Trans. A, 1981, vol. 12, pp. 1631-1645.CrossRefGoogle Scholar
  11. 11.
    B. Reppich: Acta Metall., 1982, vol. 30, pp. 87-94.CrossRefGoogle Scholar
  12. 12.
    B. Reppich, P. Schepp, G. Wehner: Acta Metall., 1982, vol. 30, pp. 95-104.CrossRefGoogle Scholar
  13. 13.
    E. Nembach, J. Pesicka, E. Langmaack: Mater. Sci. Eng., A, 2003, vol. 362, pp. 264-273.CrossRefGoogle Scholar
  14. 14.
    W.Z. Wang, H.U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, M.Y. Kim, C.Y. Jo: Mater. Sci. Eng., A, 2009, vol. 523, pp. 242-245.CrossRefGoogle Scholar
  15. 15.
    I.S. Kim, B.G. Choi, H.U. Hong, Y.S. Yoo, C.Y. Jo: Mater. Sci. Eng., A, 2011, vol. 528, pp. 7149-7155.CrossRefGoogle Scholar
  16. 16.
    Z. Zhong, Y. Gu, Y. Yuan, Z. Shi: Metall. Mater. Trans. A, 2014, vol. 45, pp. 343-350.CrossRefGoogle Scholar
  17. 17.
    F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, M. Yuyama: J. Alloys. Compd., 2016, vol. 657, pp. 565-569.CrossRefGoogle Scholar
  18. 18.
    B. Sundman, B. Jansson, J.O. Andersson: CALPHAD, 1985, vol. 9, pp. 153-190.CrossRefGoogle Scholar
  19. 19.
    P. Zhang, Y. Yuan, B. Li, G. Yang, X. Song: Philos. Mag. Lett., 2016, vol. 96, pp. 238-245.CrossRefGoogle Scholar
  20. 20.
    P. Zhang, Y. Yuan, S.C. Shen, B. Li, R.H. Zhu, G.X. Yang, X.L. Song: J. Alloys. Compd., 2017, vol. 694, pp. 502-509.CrossRefGoogle Scholar
  21. 21.
    M. Heilmaier, U. Leetz, B. Reppich: Mater. Sci. Eng., A, 2001, vol. 319, pp. 375-378.CrossRefGoogle Scholar
  22. 22.
    P. Zhang, Y. Yuan, B. Li, S.W. Guo, G.X. Yang, X.L. Song: Mater. Sci. Eng., A, 2016, vol. 655, pp. 152-159.CrossRefGoogle Scholar
  23. 23.
    D.M. Knowles, Q.Z. Chen: Mater. Sci. Eng., A, 2003, vol. 340, pp. 88-102.CrossRefGoogle Scholar
  24. 24.
    J.P. Hirth, J. Lothe: Theory of Dislocations, 2rd ed., John Wiley and Sons, Malabar, 1982.Google Scholar
  25. 25.
    A.J. Ardell: Intermetallic Compounds, J.H. Westbrook, R.L. Fleischer, eds., Wiley, Chichester, 1995, pp. 257–86.Google Scholar
  26. 26.
    T. Kruml, E. Conforto, B.L. Piccolo, D. Caillard, J.L. Martin: Acta Mater., 2002, vol. 50, pp. 5091–5101.CrossRefGoogle Scholar
  27. 27.
    N. Sun, L. Zhang, Z. Li, A. Shan: Mater. Sci. Eng., A, 2014, vol. 606, pp. 417-425.CrossRefGoogle Scholar
  28. 28.
    P. Veyssiere, J. Douin, P. Beauchamp: Philos. Mag. A, 1985, vol. 51, pp. 469-483.CrossRefGoogle Scholar
  29. 29.
    P. Caron, T. Khan, P. Veyssiere: Philos. Mag. A, 1988, vol. 57, pp. 859-875.CrossRefGoogle Scholar
  30. 30.
    B. Clausen, T. Lorentzen, T. Leffers: Acta Mater., 1998, vol. 46, pp. 3087-3098.CrossRefGoogle Scholar
  31. 31.
    S.M. Copley, B.H. Kear: Trans. Metal. AIME., 1967, vol. 239, pp. 984-992.Google Scholar
  32. 32.
    W.W. Milligan, S.D. Antolovich: Metall. Trans. A, 1987, vol. 18, pp. 85-95.CrossRefGoogle Scholar
  33. 33.
    R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1588-1603.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Xi’an Thermal Power Research Institute Co., Ltd.Xi’anChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  3. 3.State Key Laboratory for Long-life High Temperature MaterialsDongfang Turbine Co., Ltd.DeyangChina
  4. 4.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations