Impact of Aging Temperature on the Performance of a Nickel-Iron-Based Superalloy


In this study, the effects of aging temperature on the microstructure and properties of a nickel-iron (Ni-Fe)-based superalloy were investigated. On the one hand, owing to the increase in the size and particle spacing of Ni3Al (γ′) precipitate, long-term aging induced a significant drop in the alloy strength. Moreover, the increasing aging temperature from 700 °C to 750 °C further induced more than 75 MPa decline in the alloy yield strength. Furthermore, it led to a decrease in the critical stress because of dynamic recrystallization. On the other hand, the long-term aging increased the alloy’s ductility. The crack propagation along the grain boundary was inhibited, because of the decreasing grain boundary brittleness. Although the grain boundary precipitates changed from carbide to γ′ when the aging temperature increased, a distinct change in the alloy’s ductility was not observed. The transmission electron microscopy results showed that both precipitates were sheared by the grain boundary during the alloy deformation. These results confirm that aging temperature has less effect on alloy’s ductility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    R. Viswanathan, K. Coleman, U. Rao: International Journal of Pressure Vessels and Piping, 2006, vol. 83, pp. 778-83.

    Article  Google Scholar 

  2. 2.

    R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert: J. of Materi Eng and Perform, 2005, vol. 14, pp. 281-92.

    Article  Google Scholar 

  3. 3.

    T. Otsuka, M. Kaneko: Development History and Operation Experience of Ultra-Supercritical (USC) Power Plants, International Conference on Power Engineering-2007, Hangzhou, China, 2007, pp. 23-27.

  4. 4.

    R. Viswanathan, R. Purgert, S. Goodstine, J. Tanzosh, G. Stanko, J.P. Shingledecker, B. Vitalis: U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers, Advances in Materials Technology for Fossil Power Plants: Proceedings of the 5th International Conference, 2008, p. #05226G.

  5. 5.

    D. Gandy, J. Shingledecker: Fossil materials research at EPRI, Proceedings 6th International Conference on Advances in materials technology for fossil power plants, ASM International, Santa Fe, NM, USA, August–September 2010, pp. 65–71.

  6. 6.

    J. Yan, Y. Gu, J. Lu: Materials Science and Technology, 2014, vol. 31, pp. 389-99.

    Article  Google Scholar 

  7. 7.

    G. Chai, M. Boström, M. Olaison, U. Forsberg: Procedia Engineering, 2013, vol. 55, pp. 232-39.

    Article  Google Scholar 

  8. 8.

    J. Polák, R. Petráš, M. Heczko, I. Kuběna, T. Kruml, G. Chai: Materials Science and Engineering: A, 2014, vol. 615, pp. 175-82.

    Article  Google Scholar 

  9. 9.

    T. Tokairin, K.V. Dahl, H.K. Danielsen, F.B. Grumsen, T. Sato, J. Hald: Materials Science and Engineering: A, 2013, vol. 565, pp. 285-91.

    Article  Google Scholar 

  10. 10.

    J.P. Shingledecker, N.D. Evans: International Journal of Pressure Vessels and Piping, 2010, vol. 87, pp. 345-50.

    Article  Google Scholar 

  11. 11.

    F. Lin, S. Cheng, X. Xie: Energy Materials, 2008, vol. 3, pp. 201-07.

    Article  Google Scholar 

  12. 12.

    H. Semba, H. Okada, M. Yonemura, and M. Igarashi: Creep Strength and Microstructure in 23Cr-45Ni-7W Alloy (HR6W) and Ni-base Superalloys for Advanced USC Boilers, in: S. Bisinger (Ed.) 34th MPA-Seminar Materials and Components Behaviour in Energy & Plant Technology., Stuttgart, 2008, pp. 14.1–18.

  13. 13.

    J.P. Shingledecker: Energy Materials, 2007, vol. 2, pp. 235-40.

    Article  Google Scholar 

  14. 14.

    Z.H. Zhong, Y.F. Gu, Y. Yuan, Z. Shi: Materials Letters, 2013, vol. 109, pp. 38-41.

    Article  Google Scholar 

  15. 15.

    G. Jianting, D. Xiukui: Acta Metallurgica Sinica, 2005, vol. 41, pp. 1221-27.

    Google Scholar 

  16. 16.

    T.T. Wang, C.S. Wang, J.T. Guo, L.Z. Zhou: Materials Science Forum, 2013, vol. 747-748, pp. 647-53.

    Article  Google Scholar 

  17. 17.

    C. Wang, Y. Guo, J. Guo, L. Zhou: Materials & Design, 2015, vol. 88, pp. 790-98.

    Article  Google Scholar 

  18. 18.

    C. Wang, Y. Guo, J. Guo, L. Zhou: Materials Science and Engineering: A, 2016, vol. 670, pp. 178-87.

    Article  Google Scholar 

  19. 19.

    M. Tan, C. Wang, Y. Guo, G. Li, J. Guo, L. Zhou: Materials Science Forum, 2015, vol. 816, pp. 534-39.

    Article  Google Scholar 

  20. 20.

    Z. Zhong, Y. Gu, Y. Yuan, Z. Shi: Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 343-50.

    Article  Google Scholar 

  21. 21.

    TAN Meilin, WANG Changshuai, GUO Yongan, GUO Jianting, Z. Lanzhang: Acta Metall. Sin, 2014, vol. 50, pp. 1260-68.

    Google Scholar 

  22. 22.

    T. Wang, C. Wang, W. Sun, X. Qin, J. Guo, L. Zhou: Materials & Design, 2014, vol. 62, pp. 225-32.

    Article  Google Scholar 

  23. 23.

    C. Wang, T. Wang, M. Tan, Y. Guo, J. Guo, L. Zhou: Journal of Materials Science & Technology, 2015, vol. 31, pp. 135-42.

    Article  Google Scholar 

  24. 24.

    C. Wang, Y. Guo, J. Guo, L. Zhou: Materials Science and Engineering: A, 2016, vol. 675, pp. 314-22.

    Article  Google Scholar 

  25. 25.

    X. XIAO, H. ZHAO, C. WANG, Y. GUO, J. GUO, L. ZHOU: Acta Metallurgica Sinica, 2013, vol. 49, pp. 421-27.

    Article  Google Scholar 

  26. 26.

    C. Wang, Y. Guo, J. Guo, L. Zhou: Materials Science and Engineering: A, 2015, vol. 639, pp. 380-88.

    Article  Google Scholar 

  27. 27.

    F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, M. Yuyama: Journal of Alloys and Compounds, 2016, vol. 657, pp. 565-69.

    Article  Google Scholar 

  28. 28.

    J. Yan, Y. Gu, F. Sun, Y. Michinari, Z. Zhong, Y. Yuan, J. Lu: Materials Science and Engineering: A, 2015, vol. 639, pp. 15-20.

    Article  Google Scholar 

  29. 29.

    I.M. Lifshitz, V.V. Slyozov: Journal of Physics and Chemistry of Solids, 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  30. 30.

    C. Wagner, Zeitschrift für Elektrochemie: Berichte der Bunsengesellschaft für physikalische Chemie, 1961, vol. 65, pp. 581-91.

    Google Scholar 

  31. 31.

    N.D. Evans, P.J. Maziasz, R.W. Swindeman, G.D. Smith: Scripta Materialia, 2004, vol. 51, pp. 503-07.

    Article  Google Scholar 

  32. 32.

    F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, M. Yuyama: Materials Letters, 2015, vol. 159, pp. 241-44.

    Article  Google Scholar 

  33. 33.

    R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock: Metallurgical and Materials Transactions A, 2009, vol. 40, pp. 1588-1603.

    Article  Google Scholar 

  34. 34.

    E.I. Galindo-Nava, L.D. Connor, C.M.F. Rae: Acta Materialia, 2015, vol. 98, pp. 377-90.

    Article  Google Scholar 

  35. 35.

    P. Zhang, Y. Yuan, S.C. Shen, B. Li, R.H. Zhu, G.X. Yang, X.L. Song: Journal of Alloys and Compounds, 2017, vol. 694, pp. 502-09.

    Article  Google Scholar 

  36. 36.

    D.M. Knowles, Q.Z. Chen: Materials Science and Engineering: A, 2003, vol. 340, pp. 88-102.

    Article  Google Scholar 

  37. 37.

    B. Clausen, T. Lorentzen, T. Leffers: Acta Materialia, 1998, vol. 46, pp. 3087-98.

    Article  Google Scholar 

  38. 38.

    G.S. Hillier, C.M.F. Rae, H.K.D.H. Bhadeshia: Acta Metallurgica, 1988, vol. 36, pp. 95-109.

    Article  Google Scholar 

  39. 39.

    P. Veyssiere, J. Douin, P. Beauchamp: Philosophical Magazine A, 1985, vol. 51, pp. 469-83.

    Article  Google Scholar 

  40. 40.

    L.A. Gypen, A. Deruyttere: Journal of Materials Science, 1977, vol. 12, pp. 1028-33.

    Article  Google Scholar 

  41. 41.

    E.O. Hall: Proceedings of the Physical Society. Section B, 1951, vol. 64, pp. 747.

    Article  Google Scholar 

  42. 42.

    N.J. Petch: J Iron Steel Inst, 1953, vol. 174, pp. 25-28.

    Google Scholar 

  43. 43.

    Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, T. Suzuki: Transactions of the Japan Institute of Metals, 1986, vol. 27, pp. 656-64.

    Article  Google Scholar 

  44. 44.

    A.A.W. Thompson: Acta Metallurgica, 1975, vol. 23, pp. 1337-42.

    Article  Google Scholar 

  45. 45.

    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas: Progress in Materials Science, 2014, vol. 60, pp. 130-207.

    Article  Google Scholar 

  46. 46.

    H. Miura, T. Sakai, R. Mogawa, J.J. Jonas: Philosophical Magazine, 2007, vol. 87, pp. 4197-4209.

    Article  Google Scholar 

  47. 47.

    E.I. Poliak, J.J. Jonas: Acta Materialia, 1996, vol. 44, pp. 127-36.

    Article  Google Scholar 

  48. 48.

    P. Peczak, M.J. Luton: Acta Metallurgica et Materialia, 1993, vol. 41, pp. 59-71.

    Article  Google Scholar 

  49. 49.

    [49] N.F. Fiore: Reviews on high-temperature materials, 1975, vol. 2, pp. 373-408.

    Google Scholar 

  50. 50.

    Y.H. Yang, J.J. Yu, X.F. Sun, T. Jin, H.R. Guan, Z.Q. Hu: Materials Characterization, 2012, vol. 66, pp. 30-37.

    Article  Google Scholar 

  51. 51.

    T. Xu, L. Zheng, K. Wang, R.D.K. Misra: International Materials Reviews, 2013, vol. 58, pp. 263-95.

    Article  Google Scholar 

  52. 52.

    X. Li, J. Zhang, L. Rong, Y. Li: Journal of Alloys and Compounds, 2009, vol. 467, pp. 383-89.

    Article  Google Scholar 

  53. 53.

    F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, M. Yuyama: Acta Materialia, 2016, vol. 102, pp. 70-78.

    Article  Google Scholar 

  54. 54.

    J. Yan, Y. Gu, F. Sun, Y. Xu, J. Lu: Journal of Alloys and Compounds, 2017, vol. 694, pp. 739-44.

    Article  Google Scholar 

  55. 55.

    J. Yan, Y. Gu, F. Sun, Y. Xu, Y. Yuan, J. Lu, Z. Yang, Y. Dang: Materials Science and Engineering: A, 2016, vol. 675, pp. 289-98.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support from the Shaanxi Provincial People’s and Social Welfare Department (Nos. 2017031) and the National Natural Science Foundation of China (NSFC Nos. 51301131, 51401163, and 51401164).

Author information



Corresponding authors

Correspondence to Jingbo Yan or Y Gu or Fang Yang.

Additional information

Manuscript submitted June 22, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Gu, Y., Li, H. et al. Impact of Aging Temperature on the Performance of a Nickel-Iron-Based Superalloy. Metall Mater Trans A 49, 1561–1570 (2018).

Download citation