Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 5, pp 1552–1560 | Cite as

Effects of Fine Particle Peening Conditions on the Rotational Bending Fatigue Strength of a Vacuum-Carburized Transformation-Induced Plasticity-Aided Martensitic Steel

  • Koh-ichi Sugimoto
  • Tomohiko Hojo
  • Yuta Mizuno
Article

Abstract

The effects of fine particle peening conditions on the rotational bending fatigue strength of a vacuum-carburized transformation-induced plasticity-aided martensitic steel with a chemical composition of 0.20 pct C, 1.49 pct Si, 1.50 pct Mn, 0.99 pct Cr, 0.02 pct Mo, and 0.05 pct Nb were investigated for the fabrication of automotive drivetrain parts. The maximum fatigue limit, resulting from high hardness and compressive residual stress in the surface-hardened layer caused by the severe plastic deformation and the strain-induced martensite transformation of the retained austenite during fine particle peening, was obtained by fine particle peening at an arc height of 0.21 mm (N). The high fatigue limit was also a result of the increased martensite fraction and the active plastic relaxation via the strain-induced martensite transformation during fatigue deformation, as well as preferential crack initiation on the surface or at the subsurface.

Notes

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Science, Sports and Culture, Japan (No. 2013-25289262). We would like to thank Dr. Yuji Kobayashi from Sintokogio Ltd. for fine particle peening, Company Executive Kuniharu Nishizawa from Okaya Heat Treatment Co., Ltd. for vacuum carburizing, and Edanz (www.edanz.jp) for English language editing.

References

  1. 1.
    K. Maniwa, S. Obara, J. Kurogi, S. Kanai, and K. Ueura: Proc. World Tribology Congress 2013, Torino, Italy, 2013, pp. 8–13.Google Scholar
  2. 2.
    J. Kobayashi, S. Song, and K. Sugimoto: ISIJ Int., 2012, vol. 52, pp. 1124–29.CrossRefGoogle Scholar
  3. 3.
    K. Sugimoto and A.K. Srivastava: Metall. Microstr. Anal., 2015, vol. 4, pp. 344–54.CrossRefGoogle Scholar
  4. 4.
    K. Sugimoto and T. Hojo: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5272–79.CrossRefGoogle Scholar
  5. 5.
    I. Diego-Calderon, P. Rodriguez-Calvillo, A. Lara, J.M. Molina-Aldareguia, R.H. Petrov, D. De Knijf, and I. Sabirov: Mater. Sci. Eng. A, 2015, vol. 641, pp. 215–24.CrossRefGoogle Scholar
  6. 6.
    G. Gao, B. Zhang, C. Cheng, P. Zhao, H. Zhang, and B. Bai: Int. J. Fatigue, 2016, vol. 92, pp. 203–10.CrossRefGoogle Scholar
  7. 7.
    J. Kobayashi, N. Yoshikawa, and K. Sugimoto: ISIJ Int., 2013, vol. 53, pp. 1479–86.CrossRefGoogle Scholar
  8. 8.
    K. Sugimoto, Y. Mizuno, and T. Hojo: Key Eng. Mater., 2016, vol. 665, pp. 85–88.CrossRefGoogle Scholar
  9. 9.
    K. Sugimoto, Y. Mizuno, M. Natori, and T. Hojo: Int. J. Fatigue, 2017, vol. 100, pp. 206–14.CrossRefGoogle Scholar
  10. 10.
    M. Kobayashi, T. Matsui, and Y. Murakami: Int. J. Fatigue, 1998, vol. 20, pp. 351–57.CrossRefGoogle Scholar
  11. 11.
    S. Bagherifard and M. Guagliano: Eng. Fract. Mech., 2012, vol. 81, pp. 56–68.CrossRefGoogle Scholar
  12. 12.
    S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, and M. Guagliano: Mater. Des., 2013, vol. 46, pp. 497–503.CrossRefGoogle Scholar
  13. 13.
    K. Dalaei, B. Karlsson, and L.E. Svensson: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1008–15.CrossRefGoogle Scholar
  14. 14.
    K. Dalaei and B. Karlsson: Int. J. Fatigue, 2012, vol. 38, pp. 75–83.CrossRefGoogle Scholar
  15. 15.
    O. Asia, A.C. Canb, J. Pineaultc, and M. Belasselc: Mater. Des., 2009, vol. 30, pp. 1792–97.CrossRefGoogle Scholar
  16. 16.
    B. Jo, S. Sharifimehr, Y. Shim, and A. Fatemi: Int. J. Fatigue, 2017, vol. 100, pp. 454–65.CrossRefGoogle Scholar
  17. 17.
    M. Kato, Y. Matsumura, R. Ishikawa, Y. Kobayashi, and S. Ujihashi: Electr. Furn. Steel, 2008, vol. 79, pp. 69–76.Google Scholar
  18. 18.
    M. Koshimune, K. Matsui, K. Takahashi, W. Nakano, and K. Ando: Trans. Jpn. Soc. Spring Eng., 2009, vol. 54, pp. 19–26.CrossRefGoogle Scholar
  19. 19.
    K. Matsui, M. Koshimune, K. Takahashi, and K. Ando: Trans. Jpn. Soc. Spring Eng., 2010, vol. 55, pp. 7–12.CrossRefGoogle Scholar
  20. 20.
    B.A. Shaw, C. Aylott, P. O’Hara, and K. Brimble: Int. J. Fatigue, 2003, vol. 25, pp. 1279–83.CrossRefGoogle Scholar
  21. 21.
    D.P. Davies and S.L. Jenkins: Int. J. Fatigue, 2012, vol. 44, pp. 234–44.CrossRefGoogle Scholar
  22. 22.
    N. Egami, C. Kagaya, N. Inoue, H. Takeshita, and H. Mizutani: Jpn. Soc. Mech. Eng. A, 2000, vol. 66, pp. 1936–42.CrossRefGoogle Scholar
  23. 23.
    M. Moriyama, T. Nagano, N. Kawagoishi, and S. Takaki: J. Soc. Mater. Sci. Jpn., 2001, vol. 50, pp. 1126-32.CrossRefGoogle Scholar
  24. 24.
    K. Sugimoto, T. Hojo, and Y. Mizuno: ISIJ Int., 2018, vol. 58, to be published.Google Scholar
  25. 25.
    H. Maruyama: J. Jpn. Soc. Heat Treat., 1977, vol. 17, pp. 198–204.Google Scholar
  26. 26.
    Y. Maruyama, T. Miyazaki, and T. Sasaki: J. Soc. Mater. Sci. Jpn., 2015, vol. 64, pp. 560–66.CrossRefGoogle Scholar
  27. 27.
    M. Umemoto: Mater. Trans., 2003, vol. 44, pp. 1900–11.CrossRefGoogle Scholar
  28. 28.
    J. Kobayashi, D. Ina, Y. Nakajima, and K. Sugimoto: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5006–17.CrossRefGoogle Scholar
  29. 29.
    S. Wang, Y. Li, M. Yao, and R. Wang: J. Mater. Process. Technol., 1998, vol. 73, pp. 64–73.CrossRefGoogle Scholar
  30. 30.
    M.A.S. Torres and H.J.C. Voorwald: Int. J. Fatigue, 2002, vol. 24, pp. 877–86.CrossRefGoogle Scholar
  31. 31.
    Y. Shena, S.M. Moghadama, F. Sadeghia, K. Paulsonb, and R.W. Triceb: Int. J. Fatigue, 2015, vol. 75, pp. 135–44.CrossRefGoogle Scholar
  32. 32.
    T. Sakaki, K. Sugimoto, and T. Fukuzato: Acta Metall., 1983, vol. 31, pp. 1737–46.CrossRefGoogle Scholar
  33. 33.
    K. Shiozawa, T. Ohtani, S. Nishino, M. Okane, S. Kawamura, and T. Naganawa: Trans. Jpn. Soc. Mech. Eng. A, 1998, vol. 64, pp. 3050–57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical Systems EngineeringShinshu UniversityNaganoJapan
  2. 2.Institute for Materials Research, Tohoku UniversitySendaiJapan
  3. 3.Ichinomiya Works, Sintokogio, Ltd.ToyokawaJapan

Personalised recommendations